Knowledge Algebras and Their Discrete Duality

A class of knowledge algebras inspired by a logic with the knowledge operator presented in [17] is introduced . Knowledge algebras provide a formalization of the Hintikka knowledge operator [8] and reflect its rough set semantics. A discrete duality is proved for the class of knowledge algebras and a corresponding class of knowledge frames.

[1]  Anna Maria Radzikowska,et al.  Representation theorems for some fuzzy logics based on residuated non-distributive lattices , 2008, Fuzzy Sets Syst..

[2]  W. van der Hoek,et al.  Epistemic logic for AI and computer science , 1995, Cambridge tracts in theoretical computer science.

[3]  Rohit Parikh,et al.  Logical Omniscience , 1994, LCC.

[4]  Heinrich Wansing,et al.  A general possible worlds framework for reasoning about knowledge and belief , 1990, Stud Logica.

[5]  Piero Pagliani,et al.  Rough Sets and Nelson Algebras , 1996, Fundam. Informaticae.

[6]  Ewa Orlowska,et al.  Discrete Duality and Its Applications to Reasoning with Incomplete Information , 2007, RSEISP.

[7]  Ewa Orlowska Representation of vague information , 1988, Inf. Syst..

[8]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[9]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[10]  M. Stone The theory of representations for Boolean algebras , 1936 .

[11]  Wolfgang Lenzen,et al.  Recent work in epistemic logic , 1978 .

[12]  Stephen Read,et al.  Thinking about logic , 1994 .

[13]  Mihir K. Chakraborty,et al.  A Geometry of Approximation , 2009 .

[14]  Stéphane Demri,et al.  Incomplete Information: Structure, Inference, Complexity , 2002, Monographs in Theoretical Computer Science An EATCS Series.

[15]  Andrzej Skowron,et al.  Transactions on Rough Sets IX , 2008, Trans. Rough Sets.

[16]  Ewa Orlowska,et al.  Duality via Truth: Semantic frameworks for lattice-based logics , 2005, Log. J. IGPL.

[17]  Stéphane Demri A Logic with Relative Knowledge Operators , 1999, J. Log. Lang. Inf..

[18]  Ewa Orlowska,et al.  Semantics of Vague Concepts , 1985 .

[19]  Stéphane Demri,et al.  A Completeness Proof for a Logic with an Alternative Necessity Operator , 1997, Stud Logica.

[20]  Rohit Parikh Knowledge and the Problem of Logical Omniscience , 1987, ISMIS.

[21]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[22]  Gunther Schmidt,et al.  Relational Methods in Computer Science , 1999, Inf. Sci..

[23]  Chris Cornelis,et al.  Rough Sets and Intelligent Systems Paradigms , 2014, Lecture Notes in Computer Science.

[24]  Daniel Leivant,et al.  Logic and Computational Complexity , 1995, Lecture Notes in Computer Science.

[25]  G. P. Henderson,et al.  An Essay in Modal Logic. , 1953 .

[26]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[27]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[28]  Anna Maria Radzikowska,et al.  Relational Representability for Algebras of Substructural Logics , 2005, RelMiCS.

[29]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[30]  John-Jules Ch. Meyer,et al.  A Complete Epistemic Logic for Multiple Agents , 1997 .

[31]  J. Hintikka Knowledge and belief , 1962 .

[32]  Michael Bacharach,et al.  Epistemic Logic and the Theory of Games and Decisions , 2011 .

[33]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[34]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[35]  Ivo Düntsch,et al.  Relational Semantics Through Duality , 2005, RelMiCS.

[36]  Ewa Orlowska,et al.  Context Algebras, Context Frames, and Their Discrete Duality , 2008, Trans. Rough Sets.

[37]  Ewa Orlowska Logic For Reasoning About Knowledge , 1989, Math. Log. Q..

[38]  Ewa Orlowska,et al.  Algebras for Galois-style connections and their discrete duality , 2010, Fuzzy Sets Syst..

[39]  Paul Weingartner,et al.  Foundations of Logic and Linguistics , 1985 .

[40]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[41]  Theophil Eicher,et al.  Problems and Their Solutions , 2004 .