The Category of Inner Models
暂无分享,去创建一个
[1] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[2] Richard Laver. Implications Between Strong Large Cardinal Axioms , 1997, Ann. Pure Appl. Log..
[3] Donald A. Martin,et al. Measurable cardinals and analytic games , 2003 .
[4] Matthew Foreman. Review: Donald A. Martin, John R. Steel, Projective Determinacy; W. Hugh Woodin, Supercompact Cardinals, Sets of Reals, and Weakly Homogeneous Trees; Donald A. Martin, John R. Steel, A Proof of Projective Determinacy , 1992 .
[5] Saharon Shelah,et al. Large cardinals imply that every reasonably definable set of reals is lebesgue measurable , 1990 .
[6] Julius B. Barbanel. Flipping properties and huge cardinals , 1989 .
[7] E. Zermelo. Über Grenzzahlen und Mengenbereiche , 1930 .
[8] A. Kanamori. The higher infinite : large cardinals in set theory from their beginnings , 2005 .
[9] J. Neumann,et al. Die Axiomatisierung der Mengenlehre , 1928 .
[10] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[11] Y. Moschovakis. Descriptive Set Theory , 1980 .
[12] S. Ulam,et al. Zur Masstheorie in der allgemeinen Mengenlehre , 1930 .
[13] William S. Zwicker,et al. Flipping properties: A unifying thread in the theory of large cardinals , 1977 .
[14] J. Neumann. Eine Axiomatisierung der Mengenlehre. , 1925 .
[15] Donald A. Matrin. Measurable cardinals and analytic games , 1970 .
[16] Akihiro Kanamori,et al. The evolution of large cardinal axioms in set theory , 1978 .
[17] Thomas Jech,et al. Finite Left-Distributive Algebras and Embedding Algebras , 1997 .
[18] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[19] Richard Laver,et al. The Left Distributive Law and the Freeness of an Algebra of Elementary Embeddings , 1992 .
[20] John R. Steel,et al. A proof of projective determinacy , 1989 .
[21] Dana Scott. Measurable Cardinals and Constructible Sets , 2003 .
[22] A. Fraenkel. Untersuchungen über die Grundlagen der Mengenlehre , 1925 .
[23] W. Szymanowski,et al. BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .
[24] K. Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[25] Wilfrid Hodges,et al. Logic: from foundations to applications: European logic colloquium , 1996 .
[26] William S. Zwicker,et al. Flipping properties and supercompact cardinals , 1980 .
[27] Peter Koepke. Extenders, Embedding Normal Forms, and the Martin-Steel-Theorem , 1998, J. Symb. Log..