Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks

We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potential of the stationary distribution of stochastically modeled complex balanced systems. We extend this result to general birth–death models and demonstrate via example that similar scaling limits can yield Lyapunov functions even for models that are not complex or detailed balanced, and may even have multiple equilibria.

[1]  M. Feinberg,et al.  Structural Sources of Robustness in Biochemical Reaction Networks , 2010, Science.

[2]  J. Gunawardena Multisite protein phosphorylation makes a good threshold but can be a poor switch. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Crank Tables of Integrals , 1962 .

[4]  H. Nijhout,et al.  A Population Model of Folate-Mediated One-Carbon Metabolism , 2013, Nutrients.

[5]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[6]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[7]  H. Qian Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems—an analytical theory , 2011 .

[8]  Heinz Koeppl,et al.  Dynamical properties of Discrete Reaction Networks , 2013, Journal of mathematical biology.

[9]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[10]  J. Kingman A FIRST COURSE IN STOCHASTIC PROCESSES , 1967 .

[11]  F. Horn Necessary and sufficient conditions for complex balancing in chemical kinetics , 1972 .

[12]  Gilles Gnacadja Univalent positive polynomial maps and the equilibrium state of chemical networks of reversible binding reactions , 2009, Adv. Appl. Math..

[13]  H. Othmer,et al.  A new method for choosing the computational cell in stochastic reaction–diffusion systems , 2012, Journal of mathematical biology.

[14]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[15]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[16]  L. Allen An introduction to stochastic processes with applications to biology , 2003 .

[17]  James S. Harris,et al.  Tables of integrals , 1998 .

[18]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[19]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[20]  T. Kurtz Representations of Markov Processes as Multiparameter Time Changes , 1980 .

[21]  R. Jackson,et al.  General mass action kinetics , 1972 .

[22]  T. Kurtz Approximation of Population Processes , 1987 .

[23]  H. Othmer,et al.  A stochastic analysis of first-order reaction networks , 2005, Bulletin of mathematical biology.

[24]  M. Feinberg The existence and uniqueness of steady states for a class of chemical reaction networks , 1995 .

[25]  J. Bauer,et al.  Chemical reaction network theory for in-silico biologists , 2003 .

[26]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[27]  David F. Anderson,et al.  The Dynamics of Weakly Reversible Population Processes near Facets , 2010, SIAM J. Appl. Math..

[28]  Stefan Engblom Spectral approximation of solutions to the chemical master equation , 2009 .

[29]  Thomas G. Kurtz,et al.  Stochastic Analysis of Biochemical Systems , 2015 .

[30]  David F. Anderson,et al.  A Proof of the Global Attractor Conjecture in the Single Linkage Class Case , 2011, SIAM J. Appl. Math..

[31]  David F Anderson,et al.  Product-Form Stationary Distributions for Deficiency Zero Networks with Non-mass Action Kinetics , 2016, Bulletin of Mathematical Biology.

[32]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[33]  Ezra Miller,et al.  A Geometric Approach to the Global Attractor Conjecture , 2013, SIAM J. Appl. Dyn. Syst..

[34]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[35]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[36]  Horst R. Thieme,et al.  Dynamical Systems And Population Persistence , 2016 .

[37]  George H. Weiss,et al.  A First Course in Stochastic Processes, 2nd sd. (Samuel Karlin and Howard M. Taylor) , 1977 .

[38]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[39]  Peter Whittle,et al.  Systems in stochastic equilibrium , 1986 .

[40]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[41]  Mustafa Khammash,et al.  Determining the long-term behavior of cell populations: A new procedure for detecting ergodicity in large stochastic reaction networks , 2013, 1312.2879.

[42]  David F. Anderson,et al.  Global Asymptotic Stability for a Class of Nonlinear Chemical Equations , 2007, SIAM J. Appl. Math..

[43]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .

[44]  Casian Pantea,et al.  On the Persistence and Global Stability of Mass-Action Systems , 2011, SIAM J. Math. Anal..

[45]  T. Kurtz Strong approximation theorems for density dependent Markov chains , 1978 .

[46]  Germán A. Enciso,et al.  Stochastic analysis of biochemical reaction networks with absolute concentration robustness , 2013, Journal of The Royal Society Interface.

[47]  David F. Anderson,et al.  Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks , 2008, Bulletin of mathematical biology.

[48]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[49]  Liming Wang,et al.  Protein Scaffolds Can Enhance the Bistability of Multisite Phosphorylation Systems , 2012, PLoS Comput. Biol..

[50]  Fedor Nazarov,et al.  Persistence and Permanence of Mass-Action and Power-Law Dynamical Systems , 2010, SIAM J. Appl. Math..

[51]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[52]  Hong Qian,et al.  Grand canonical Markov model: a stochastic theory for open nonequilibrium biochemical networks. , 2006, The Journal of chemical physics.