Map merging for distributed robot navigation

A set of robots mapping an area can potentially combine their information to produce a distributed map more efficiently than a single robot alone. We describe a general framework for distributed map building in the presence of uncertain communication. Within this framework, we then present a technical solution to the key decision problem of determining relative location within partial maps.

[1]  Kurt Konolige,et al.  A Multi-Agent System for Multi-Robot Mapping and Exploration , 2002 .

[2]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[3]  Nando de Freitas,et al.  Sequential Monte Carlo in Practice , 2001 .

[4]  John J. Leonard,et al.  Explore and return: experimental validation of real-time concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[5]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[6]  Roland Siegwart,et al.  Multisensor on-the-fly localization: : Precision and reliability for applications , 2001, Robotics Auton. Syst..

[7]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[9]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[10]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Machine Learning.

[11]  Kurt Konolige,et al.  Markov Localization using Correlation , 1999, IJCAI.

[12]  Stephen Marsland,et al.  Learning to autonomously select landmarks for navigation and communication , 2002 .

[13]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[14]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[15]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[16]  Brian Yamauchi,et al.  Frontier-based exploration using multiple robots , 1998, AGENTS '98.

[17]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[18]  Wolfram Burgard,et al.  Coordination for Multi-Robot Exploration and Mapping , 2000, AAAI/IAAI.

[19]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.