The Inflation Technique for Causal Inference with Latent Variables

Abstract The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution’s incompatibility with the causal structure (of which Bell inequalities and Pearl’s instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.

[1]  V. Jonker,et al.  TH' , 2019, Dictionary of Upriver Halkomelem.

[2]  Rafael Chaves,et al.  Indistinguishability of causal relations from limited marginals , 2016, 1607.08540.

[3]  G. Ziegler,et al.  Polytopes : combinatorics and computation , 2000 .

[4]  Shane Mansfield,et al.  Hardy’s Non-locality Paradox and Possibilistic Conditions for Non-locality , 2011, 1105.1819.

[5]  Antonio Acín,et al.  Quantum Inflation: A General Approach to Quantum Causal Compatibility , 2019, Physical Review X.

[6]  Seth Sullivant,et al.  Identifying Causal Effects with Computer Algebra , 2010, UAI.

[7]  P. Bousso,et al.  DISC , 2012 .

[8]  Nihat Ay,et al.  Information-theoretic inference of common ancestors , 2010, Entropy.

[9]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[10]  Egon Balas Projection with a Minimal System of Inequalities , 1998, Comput. Optim. Appl..

[11]  Tarik Kaced Equivalence of two proof techniques for non-shannon-type inequalities , 2013, 2013 IEEE International Symposium on Information Theory.

[12]  Bernhard Schölkopf,et al.  Inferring latent structures via information inequalities , 2014, UAI.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Z. Merali,et al.  Questioning the foundations of physics : which of our fundamental assumptions are wrong? , 2015 .

[15]  Jin Tian,et al.  Inequality Constraints in Causal Models with Hidden Variables , 2006, UAI.

[16]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[17]  Thomas Kahle Neighborliness of Marginal Polytopes , 2008, 0809.0786.

[18]  Robin J. Evans,et al.  Graphical methods for inequality constraints in marginalized DAGs , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[19]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[20]  N. N. Vorob’ev Consistent Families of Measures and Their Extensions , 1962 .

[21]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[22]  J. Pienaar,et al.  Which causal structures might support a quantum–classical gap? , 2016, 1606.07798.

[23]  Robert W. Spekkens,et al.  Causal Inference via Algebraic Geometry: Feasibility Tests for Functional Causal Structures with Two Binary Observed Variables , 2015, 1506.03880.

[24]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[25]  Georg Gottlob,et al.  Computational aspects of monotone dualization: A brief survey , 2008, Discret. Appl. Math..

[26]  Howard Barnum,et al.  Post-Classical Probability Theory , 2012, 1205.3833.

[27]  J. Maciejowski,et al.  On Polyhedral Projection and Parametric Programming , 2008 .

[28]  S. Wehner,et al.  A unified view on Hardyʼs paradox and the Clauser–Horne–Shimony–Holt inequality , 2014, 1407.2320.

[29]  Aram Galstyan,et al.  A Sequence of Relaxations Constraining Hidden Variable Models , 2011, UAI 2011.

[30]  Matthew F Pusey,et al.  Theory-independent limits on correlations from generalized Bayesian networks , 2014, 1405.2572.

[31]  T. V'ertesi,et al.  Quantum bounds on Bell inequalities , 2008, 0810.1615.

[32]  Valerio Scarani,et al.  THE DEVICE-INDEPENDENT OUTLOOK ON QUANTUM PHYSICS , 2013 .

[33]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[34]  C. Ross Found , 1869, The Dental register.

[35]  R. Yeung Beyond Shannon-Type Inequalities , 2008 .

[36]  B. M. Fulk MATH , 1992 .

[37]  T. Fritz,et al.  Exploring the Local Orthogonality Principle , 2013, 1311.6699.

[38]  R. Spekkens,et al.  Quantum common causes and quantum causal models , 2016, 1609.09487.

[39]  Nicolas Gisin,et al.  Nonlinear Bell Inequalities Tailored for Quantum Networks. , 2015, Physical review letters.

[40]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[41]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[42]  S. Pironio,et al.  Popescu-Rohrlich correlations as a unit of nonlocality. , 2005, Physical review letters.

[43]  Armin Tavakoli,et al.  Nonlocal correlations in the star-network configuration , 2014, 1409.5702.

[44]  J. Maciejowski,et al.  Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .

[45]  V. Kaibel,et al.  Mini-Workshop: Exploiting Symmetry in Optimization , 2010 .

[46]  A. Acín,et al.  Almost quantum correlations , 2014, Nature Communications.

[47]  Franz von Kutschera,et al.  Causation , 1993, J. Philos. Log..

[48]  Adán Cabello,et al.  Simple Explanation of the Quantum Limits of Genuine n-Body Nonlocality. , 2014, Physical review letters.

[49]  R. Chaves,et al.  Entropic nonsignalling correlations , 2016 .

[50]  Randall Dougherty,et al.  Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.

[51]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[52]  T. Fritz,et al.  Entropic approach to local realism and noncontextuality , 2012, 1201.3340.

[53]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[54]  M. Pawłowski,et al.  Information Causality , 2011, 1112.1142.

[55]  S. Braunstein,et al.  Information-theoretic Bell inequalities. , 1988, Physical review letters.

[56]  C.J.H. Mann,et al.  Probabilistic Conditional Independence Structures , 2005 .

[57]  J. Pienaar Which causal scenarios are interesting , 2016 .

[58]  Marco T'ulio Quintino,et al.  All noncontextuality inequalities for the n-cycle scenario , 2012, 1206.3212.

[59]  Christopher Meek,et al.  Quantifier Elimination for Statistical Problems , 1999, UAI.

[60]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[61]  H. Barnum,et al.  Cloning and Broadcasting in Generic Probabilistic Theories , 2006, quant-ph/0611295.

[62]  Fabio Costa,et al.  Quantum causal modelling , 2015, 1512.07106.

[63]  Jin Tian,et al.  Polynomial Constraints in Causal Bayesian Networks , 2007, UAI.

[64]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[65]  S. Massar,et al.  Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.

[66]  Raimund Seidel,et al.  How Good Are Convex Hull Algorithms? , 1997, Comput. Geom..

[67]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[68]  Rafael Chaves,et al.  Polynomial Bell Inequalities. , 2015, Physical review letters.

[69]  A. Tavakoli Bell-type inequalities for arbitrary noncyclic networks , 2015, 1510.05977.

[70]  Judea Pearl,et al.  Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution , 2018, WSDM.

[71]  J. Henson Causality, Bell's theorem, and Ontic Definiteness , 2011, 1102.2855.

[72]  Christian Majenz,et al.  Information–theoretic implications of quantum causal structures , 2014, Nature Communications.

[73]  H. Hinrichsen,et al.  Generalized probability theories: what determines the structure of quantum theory? , 2014, 1402.6562.

[74]  T. Fritz Beyond Bell's theorem: correlation scenarios , 2012, 1206.5115.

[75]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[76]  A. Schürmann,et al.  Exploiting Symmetries in Polyhedral Computations , 2013 .

[77]  Judea Pearl,et al.  On the Testability of Causal Models With Latent and Instrumental Variables , 1995, UAI.

[78]  Miguel Navascués,et al.  The Inflation Technique Completely Solves the Causal Compatibility Problem , 2017 .

[79]  Gerhard Reinelt,et al.  PANDA: a software for polyhedral transformations , 2015, EURO J. Comput. Optim..

[80]  George B. Dantzig,et al.  Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory, Ser. A.

[81]  Sebastiano Vigna,et al.  Fibrations of graphs , 2002, Discret. Math..

[82]  Colin N. Jones,et al.  Polyhedral Tools for Control , 2005 .

[83]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[84]  Elie Wolfe,et al.  Causal compatibility inequalities admitting quantum violations in the triangle structure , 2017, Physical Review A.

[85]  Springer Medizin,et al.  INFO , 2018, Heilberufe.

[86]  Mahn‐Soo Choi,et al.  Hardy’s test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects , 2008, 0808.0052.

[87]  Chuncheng Chen,et al.  Br−/BrO−-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3 , 2023, Nature Communications.

[88]  Hardy's approach, Eberhard's inequality, and supplementary assumptions. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[89]  Rafael Chaves,et al.  Entropic Inequalities and Marginal Problems , 2011, IEEE Transactions on Information Theory.

[90]  Luis David Garcia,et al.  Algebraic Statistics in Model Selection , 2004, UAI.

[91]  P. Alam ‘K’ , 2021, Composites Engineering.

[92]  D. Gross,et al.  Causal structures from entropic information: geometry and novel scenarios , 2013, 1310.0284.

[93]  Sergey Bastrakov,et al.  Fast method for verifying Chernikov rules in Fourier-Motzkin elimination , 2015 .

[94]  I. Pitowsky,et al.  George Boole's ‘Conditions of Possible Experience’ and the Quantum Puzzle , 1994, The British Journal for the Philosophy of Science.

[95]  D. Avis A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .

[96]  H. H. Wills,et al.  Aspects of Quantum Non-locality. , 2004 .

[97]  Roger Colbeck,et al.  Non-Shannon inequalities in the entropy vector approach to causal structures , 2016, 1605.02078.

[98]  Schumacher,et al.  Information and quantum nonseparability. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[99]  S. Popescu Nonlocality beyond quantum mechanics , 2014, Nature Physics.

[100]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[101]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[102]  Robert W. Spekkens,et al.  The Paradigm of Kinematics and Dynamics Must Yield to Causal Structure , 2012, 1209.0023.

[103]  Robert W. Spekkens,et al.  Causal inference via algebraic geometry: necessary and sufficient conditions for the feasibility of discrete causal models , 2015 .

[104]  Achill Schürmann,et al.  C++ Tools for Exploiting Polyhedral Symmetries , 2010, ICMS.

[105]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[106]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[107]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[108]  Rafael Chaves,et al.  Computational tools for solving a marginal problem with applications in Bell non-locality and causal modeling , 2018, Journal of Physics A: Mathematical and Theoretical.

[109]  G. Ghirardi,et al.  Proofs of nonlocality without inequalities revisited , 2007, 0711.0505.

[110]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[111]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[112]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[113]  R. Spekkens,et al.  Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity , 2010 .

[114]  D. Janzing,et al.  A quantum advantage for inferring causal structure , 2015, Nature Physics.

[115]  Jin Tian,et al.  On the Testable Implications of Causal Models with Hidden Variables , 2002, UAI.

[116]  Rafael Chaves,et al.  Entropic Nonsignaling Correlations. , 2016, Physical review letters.

[117]  Mathieu Dutour Sikiric,et al.  Polyhedral representation conversion up to symmetries , 2007, ArXiv.

[118]  Andreas Fordan,et al.  Projection in constraint logic programming , 1999, DISKI.

[119]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[120]  runden Tisch,et al.  AM , 2020, Catalysis from A to Z.

[121]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[122]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[123]  Dan Geiger,et al.  Graphical Models and Exponential Families , 1998, UAI.

[124]  Elie Wolfe,et al.  Identifying nonconvexity in the sets of limited-dimension quantum correlations , 2015, 1506.01119.

[125]  Rafael Chaves,et al.  Semidefinite Tests for Latent Causal Structures , 2017, IEEE Transactions on Information Theory.

[126]  ERLING D. ANDERSEN,et al.  Certificates of Primal or Dual Infeasibility in Linear Programming , 2001, Comput. Optim. Appl..

[127]  C. J. Wood,et al.  The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning , 2012, 1208.4119.

[128]  Jean-Daniel Bancal On the Device-Independent Approach to Quantum Physics , 2013 .

[129]  Tobias Fritz,et al.  Beyond Bell’s Theorem II: Scenarios with Arbitrary Causal Structure , 2014, 1404.4812.

[130]  A. Falcon Physics I.1 , 2018 .

[131]  Quantum Bell Inequalities from Macroscopic Locality , 2010, 1011.0246.

[132]  Adan Cabello Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states , 2002 .

[133]  D. V. Shapot,et al.  Solution Building for Arbitrary System of Linear Inequalities in an Explicit Form , 2012 .

[134]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[135]  Stanley Gudder,et al.  Quantum probability—Quantum logic (Lecture notes in physics 321). By Itamar Pitowsky , 1989 .

[136]  H. Kellerer Verteilungsfunktionen mit gegebenen Marginalverteilungen , 1964 .

[137]  Daniel Rohrlich,et al.  PR-Box Correlations Have No Classical Limit , 2014, 1407.8530.

[138]  R. Phelps,et al.  Tensor products of compact convex sets. , 1969 .

[139]  I. Pitowsky Quantum Probability ― Quantum Logic , 1989 .

[140]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[141]  N. Gisin,et al.  Bilocal versus nonbilocal correlations in entanglement-swapping experiments , 2011, 1112.4502.