An auxiliary space preconditioner for linear elasticity based on the generalized finite element method
暂无分享,去创建一个
[1] S. C. Brenner,et al. Linear finite element methods for planar linear elasticity , 1992 .
[2] I. Babuska,et al. On locking and robustness in the finite element method , 1992 .
[3] I. Babuska,et al. Locking effects in the finite element approximation of elasticity problems , 1992 .
[4] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[5] Susanne C. Brenner. A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity , 1994 .
[6] R. S. Falk. Nonconforming finite element methods for the equations of linear elasticity , 1991 .
[7] Ludmil T. Zikatanov,et al. A multilevel preconditioning for generalized finite element method problems on unstructured simplicial meshes , 2007, J. Num. Math..
[8] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[9] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[10] Thomas A. Manteuffel,et al. First-Order System Least Squares For Linear Elasticity: Numerical Results , 1999, SIAM J. Sci. Comput..
[11] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[12] Jinchao Xu,et al. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.
[13] Chang-Ock Lee. A conforming mixed finite element method for the pure traction problem of linear elasticity , 1998, Appl. Math. Comput..
[14] Joachim Schöberl,et al. Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.
[15] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[16] Thomas A. Manteuffel,et al. First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .