Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

BackgroundAnopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range.ResultsHere, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism.ConclusionsThe genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions.

[1]  J. Ribeiro,et al.  An insight into the sialome of blood-feeding Nematocera. , 2010, Insect biochemistry and molecular biology.

[2]  T. Werner,et al.  In silico prediction of scaffold/matrix attachment regions in large genomic sequences. , 2002, Genome research.

[3]  C. Bourgouin,et al.  Density-dependent impact of the human malaria parasite Plasmodium falciparum gametocyte sex ratio on mosquito infection rates , 2009, Proceedings of the Royal Society B: Biological Sciences.

[4]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[5]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[6]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[7]  L. Keller,et al.  The genome of the fire ant Solenopsis invicta , 2011, Proceedings of the National Academy of Sciences.

[8]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[9]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[10]  Daniel Robert,et al.  Active auditory mechanics in mosquitoes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  E. Marois,et al.  Targeted Mutagenesis in the Malaria Mosquito Using TALE Nucleases , 2013, PloS one.

[12]  Evgeny M. Zdobnov,et al.  OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs , 2012, Nucleic Acids Res..

[13]  Sofia M. C. Robb,et al.  MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.

[14]  Jeffrey A. Bailey,et al.  Genome Landscape and Evolutionary Plasticity of Chromosomes in Malaria Mosquitoes , 2010, PloS one.

[15]  Sébastien Tempel Using and understanding RepeatMasker. , 2012, Methods in molecular biology.

[16]  Josh Goodman,et al.  Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. , 2008, Genetics.

[17]  D. O’brochta,et al.  piggyBac transposon remobilization and enhancer detection in Anopheles mosquitoes , 2011, Proceedings of the National Academy of Sciences.

[18]  J. Ribeiro,et al.  Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. , 2003, Insect biochemistry and molecular biology.

[19]  R. Baker,et al.  Triploids and male determination in the mosquito, Anopheles culicifacies. , 1979, The Journal of heredity.

[20]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[21]  Stuart L. Schreiber,et al.  Structure of the FKBP12-Rapamycin Complex Interacting with Binding Domain of Human FRAP , 1996, Science.

[22]  Jeanne Romero-Severson,et al.  Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus , 2002, Science.

[23]  Aaron L. Halpern,et al.  Consensus generation and variant detection by Celera Assembler , 2008, Bioinform..

[24]  Arjun Bhutkar,et al.  Chromosomal Rearrangement Inferred From Comparisons of 12 Drosophila Genomes , 2008, Genetics.

[25]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[26]  S. Salzberg,et al.  Hierarchical scaffolding with Bambus. , 2003, Genome research.

[27]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[28]  Sarah Wong,et al.  Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host , 2013, PLoS pathogens.

[29]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[30]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[31]  Ogobara K. Doumbo,et al.  A Research Agenda to Underpin Malaria Eradication , 2011, PLoS medicine.

[32]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[33]  Benjamin J. Raphael,et al.  Microinversions in mammalian evolution , 2006, Proceedings of the National Academy of Sciences.

[34]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[35]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[36]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[37]  Lei Ma,et al.  Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites , 2014, BMC Genomics.

[38]  Y. Qi,et al.  A unique Y gene in the Asian malaria mosquito Anopheles stephensi encodes a small lysine‐rich protein and is transcribed at the onset of embryonic development , 2013, Insect molecular biology.

[39]  J. Bailey,et al.  Genome mapping and characterization of the Anopheles gambiae heterochromatin , 2010, BMC Genomics.

[40]  Pavel A Pevzner,et al.  The Fragile Breakage versus Random Breakage Models of Chromosome Evolution , 2006, PLoS Comput. Biol..

[41]  Michael Ashburner,et al.  Principles of Genome Evolution in the Drosophila melanogaster Species Group , 2007, PLoS biology.

[42]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[43]  Peng Liu,et al.  Model-based clustering for RNA-seq data , 2014, Bioinform..

[44]  Arvind Sharma,et al.  Population genetic structure of malaria vector Anopheles stephensi Liston (Diptera: Culicidae). , 2013, Indian journal of experimental biology.

[45]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[46]  Glenn Tesler,et al.  GRIMM: genome rearrangements web server , 2002, Bioinform..

[47]  Arek Kasprzyk,et al.  BioMart: driving a paradigm change in biological data management , 2011, Database J. Biol. Databases Curation.

[48]  George Dimopoulos,et al.  Caspar Controls Resistance to Plasmodium falciparum in Diverse Anopheline Species , 2009, PLoS pathogens.

[49]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[50]  P. Guerin,et al.  Nutrient content of diet affects the signaling activity of the insulin/target of rapamycin/p70 S6 kinase pathway in the African malaria mosquito Anopheles gambiae. , 2008, Journal of insect physiology.

[51]  M. Sharakhova,et al.  Arm-specific dynamics of chromosome evolution in malaria mosquitoes , 2011, BMC Evolutionary Biology.

[52]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[53]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[54]  Kaushik Sengupta,et al.  Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. , 2008, Genes & development.

[55]  Evgeny M. Zdobnov,et al.  Genome Sequence of Aedes aegypti, a Major Arbovirus Vector , 2007, Science.

[56]  J. Faeder,et al.  The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases , 2011, BMC Genomics.

[57]  Guoli Zhou,et al.  Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection , 2013, Science.

[58]  K. Anderson,et al.  Establishment of dorsal-ventral polarity in the drosophila embryo: The induction of polarity by the Toll gene product , 1985, Cell.

[59]  Ferran Casals,et al.  How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. , 2001, Genome research.

[60]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[61]  G. Dimopoulos,et al.  Engineered Anopheles Immunity to Plasmodium Infection , 2011, PLoS pathogens.

[62]  A. Ghani,et al.  Costs and cost-effectiveness of malaria control interventions - a systematic review , 2011, Malaria Journal.

[63]  F. Catteruccia,et al.  Stable and heritable gene silencing in the malaria vector Anopheles stephensi. , 2003, Nucleic acids research.

[64]  F. C. Kafatos,et al.  Widespread Divergence Between Incipient Anopheles gambiae Species Revealed by Whole Genome Sequences , 2010, Science.

[65]  James R Faeder,et al.  In vivo, in vitro, and in silico studies suggest a conserved immune module that regulates malaria parasite transmission from mammals to mosquitoes. , 2013, Journal of theoretical biology.

[66]  L. M. Rueda,et al.  First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. , 2014, Acta tropica.

[67]  M. Blaxter,et al.  Comparing de novo assemblers for 454 transcriptome data , 2010, BMC Genomics.

[68]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[69]  W. Black,et al.  Mosquito genomes: structure, organization, and evolution. , 1999, Advances in genetics.

[70]  Siv G. E. Andersson,et al.  genoPlotR: comparative gene and genome visualization in R , 2010, Bioinform..

[71]  Chunhong Mao,et al.  Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs , 2014, BMC Biology.

[72]  F. Mahmood,et al.  Inversion polymorphisms in natural populations of Anopheles stephensi. , 1984, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie.

[73]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[74]  R. Snow,et al.  Shrinking the malaria map: progress and prospects , 2010, Lancet.

[75]  References , 1971 .

[76]  M. Abai,et al.  Effect of washing on the bioefficacy of insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) against main malaria vector Anopheles stephensi by three bioassay methods. , 2008, Journal of vector borne diseases.

[77]  S. Grewal Insulin/TOR signaling in growth and homeostasis: a view from the fly world. , 2009, The international journal of biochemistry & cell biology.

[78]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[79]  V. Sharma,et al.  Current scenario of malaria in India. , 1999, Parassitologia.

[80]  Zhiyong Xi,et al.  The Aedes aegypti Toll Pathway Controls Dengue Virus Infection , 2008, PLoS pathogens.

[81]  N. Stuurman,et al.  DNA from Drosophila melanogaster beta-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ. , 1996, Gene.

[82]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[83]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[84]  A. Weeks,et al.  Chromosomal inversion polymorphisms and adaptation. , 2004, Trends in ecology & evolution.

[85]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[86]  A. James,et al.  Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development , 2012, Proceedings of the National Academy of Sciences.

[87]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[88]  S. Luckhart,et al.  Ingested Human Insulin Inhibits the Mosquito NF-κB-Dependent Immune Response to Plasmodium falciparum , 2012, Infection and Immunity.

[89]  Yumin Qi,et al.  Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females , 2013, BMC Genomics.

[90]  Scott J. Emrich,et al.  The Evolution of the Anopheles 16 Genomes Project , 2013, G3: Genes, Genomes, Genetics.

[91]  J. Ribeiro,et al.  An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae , 2005, Journal of Experimental Biology.

[92]  Ai Xia,et al.  A physical map for an Asian malaria mosquito, Anopheles stephensi. , 2010, The American journal of tropical medicine and hygiene.

[93]  P. Pevzner,et al.  Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.

[94]  Francisco Prosdocimi,et al.  The Genome of Anopheles darlingi, the main neotropical malaria vector , 2013, Nucleic acids research.

[95]  F. Catteruccia,et al.  piggyBac-mediated Germline Transformation of the Malaria Mosquito Anopheles stephensi Using the Red Fluorescent Protein dsRED as a Selectable Marker* , 2002, The Journal of Biological Chemistry.

[96]  Ian J. Russell,et al.  Humming in Tune: Sex and Species Recognition by Mosquitoes on the Wing , 2010, Journal of the Association for Research in Otolaryngology.

[97]  Andrea Crisanti,et al.  A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae , 2011, BMC Genomics.