Global Bacteria Optimization Meta-Heuristic Algorithm for Jobshop Scheduling

This paper examines the problem of jobshop scheduling with either makespan minimization or total tardiness minimization, which are both known to be NP-hard. The authors propose the use of a meta-heuristic procedure inspired from bacterial phototaxis. This procedure, called Global Bacteria Optimization (GBO), emulates the reaction of some organisms (bacteria) to light stimulation. Computational experiments are performed using well-known instances from literature. Results show that the algorithm equals and even outperforms previous state-of-the-art procedures in terms of quality of solution and requires very short computational time.

[1]  E. Nowicki,et al.  A Fast Taboo Search Algorithm for the Job Shop Problem , 1996 .

[2]  Mitsuo Gen,et al.  A tutorial survey of job-shop scheduling problems using genetic algorithms—I: representation , 1996 .

[3]  Norman R. Pace,et al.  The largest bacterium , 1993, Nature.

[4]  Ronggong Song,et al.  Trust in E-services: Technologies, Practices and Challenges , 2007 .

[5]  N. Jawahar,et al.  A multiobjective genetic algorithm for job shop scheduling , 2001 .

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  Michael Leuschel,et al.  Holistic Trust Design of E-Services , 2006 .

[8]  Carolina Salto,et al.  Enhanced evolutionary algorithms for single and multiobjective optimization in the job shop scheduling problem , 2002, Knowl. Based Syst..

[9]  Kazi Shah Nawaz Ripon Hybrid Evolutionary Approach for Multi-Objective Job-Shop Scheduling Problem , 1970 .

[10]  Sam Kwong,et al.  Multi-Objective Evolutionary Job-Shop Scheduling Using Jumping Genes Genetic Algorithm , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[11]  Martyn Amos,et al.  Bacterial Self-Organisation and Computation , 2005, Int. J. Unconv. Comput..

[12]  K. Young The Selective Value of Bacterial Shape , 2006, Microbiology and Molecular Biology Reviews.

[13]  Alain Wegmann,et al.  A Modeling Framework for Analyzing the Viability of Service Systems , 2011, Int. J. Serv. Sci. Manag. Eng. Technol..

[14]  Jan Karel Lenstra,et al.  A Computational Study of Local Search Algorithms for Job Shop Scheduling , 1994, INFORMS J. Comput..

[15]  John Wang Implementation and Integration of Information Systems in the Service Sector , 2012 .

[16]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[17]  Voratas Kachitvichyanukul,et al.  A two-level Particle Swarm Optimisation algorithm on Job-Shop Scheduling Problems , 2009 .

[18]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[19]  Egon Balas,et al.  The Shifting Bottleneck Procedure for Job Shop Scheduling , 1988 .

[20]  Andrew Y. C. Nee,et al.  Applying Ant Colony Optimisation (ACO) algorithm to dynamic job shop scheduling problems , 2008, Int. J. Manuf. Res..

[21]  Nicole B. Koppel,et al.  InformatIon SyStemS In the ServIce Sector , 2010 .

[22]  Jacek Blazewicz,et al.  The job shop scheduling problem: Conventional and new solution techniques , 1996 .

[23]  Peter Ross,et al.  Evolutionary Scheduling: A Review , 2005, Genetic Programming and Evolvable Machines.

[24]  Yunlong Zhu,et al.  Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning , 2010, Appl. Soft Comput..

[25]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[26]  Alberto Delgado,et al.  A novel multiobjective optimization algorithm based on bacterial chemotaxis , 2010, Eng. Appl. Artif. Intell..

[27]  Luiz Antonio Joia,et al.  Call Center Operational Performance Indicators and Customer Satisfaction: An Explanatory-Exploratory Investigation , 2011, Int. J. Inf. Syst. Serv. Sect..

[28]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[29]  Ting-Wei Chang,et al.  The Development of Parameters and Warning Algorithms for an Intersection Bus-Pedestrian Collision Warning System , 2011, Int. J. Inf. Syst. Serv. Sect..

[30]  Cezar Augusto Sierakowski,et al.  Path Planning Optimization for Mobile Robots Based on Bacteria Colony Approach , 2004, WSC.

[31]  El-Ghazali Talbi,et al.  Hybridizing exact methods and metaheuristics: A taxonomy , 2009, Eur. J. Oper. Res..

[32]  Deming Lei,et al.  Crowding-measure-based multiobjective evolutionary algorithm for job shop scheduling , 2006 .