How to learn from the resilience of Human-Machine Systems?

This paper proposes a functional architecture to learn from resilience. First, it defines the concept of resilience applied to Human-Machine System (HMS) in terms of safety management for perturbations and proposes some indicators to assess this resilience. Local and global indicators for evaluating human-machine resilience are used for several criteria. A multi-criteria resilience approach is then developed in order to monitor the evolution of local and global resilience. The resilience indicators are the possible inputs of a learning system that is capable of producing several outputs, such as predictions of the possible evolutions of the system's resilience and possible alternatives for human operators to control resilience. Our system has a feedback-feedforward architecture and is capable of learning from the resilience indicators. A practical example is explained in detail to illustrate the feasibility of such prediction.

[1]  Frédéric Vanderhaegen,et al.  Human-error-based design of barriers and analysis of their uses , 2010, Cognition, Technology & Work.

[2]  David A. Wardle,et al.  New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances , 2004 .

[3]  Sophie Martin,et al.  La résilience dans les modèles de systèmes écologiques et sociaux , 2005 .

[4]  Nancy G. Leveson,et al.  A new accident model for engineering safer systems , 2004 .

[5]  Wenjun Chris Zhang,et al.  On the principle of design of resilient systems – application to enterprise information systems , 2010, Enterp. Inf. Syst..

[6]  B. K. Panigrahi,et al.  ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE , 2010 .

[7]  V. Goussé,et al.  Apport de la génétique dans les études sur la résilience : l’exemple de l’autisme , 2008 .

[8]  Frédéric Vanderhaegen,et al.  Cooperative system organisation and task allocation : Illustration of task allocation in air traffic control , 1999 .

[9]  David Woods,et al.  Resilience Engineering: Concepts and Precepts , 2006 .

[10]  Erik Hollnagel,et al.  Epilogue: Resilience Engineering Precepts , 2006 .

[11]  Patrick Millot,et al.  Assessment of Transportation System Resilience , 2011 .

[12]  Serge Debernard,et al.  Principles of adjustable autonomy: a framework for resilient human–machine cooperation , 2010, Cognition, Technology & Work.

[13]  Frédéric Vanderhaegen,et al.  Multilevel organization design: The case of the air traffic control , 1997 .

[14]  Frédéric Vanderhaegen,et al.  Using adjustable autonomy and human-machine cooperation to make a human-machine system resilient - Application to a ground robotic system , 2011, Inf. Sci..

[15]  Frédéric Vanderhaegen,et al.  How to learn from the resilience of human-machine systems? , 2010, IFAC HMS.

[16]  Frédéric Vanderhaegen Autonomy control of human-machine systems , 2010, IFAC HMS.

[17]  Erik Hollnagel,et al.  Resilience Engineering in Practice: A Guidebook , 2012 .

[18]  Sylvain Piechowiak,et al.  Human-reliability analysis of cooperative redundancy to support diagnosis , 2004, IEEE Transactions on Reliability.

[19]  Yung-Chang Chen,et al.  Adaptive error-resilience transcoding using prioritized intra-refresh for video multicast over wireless networks , 2007, Signal Process. Image Commun..

[20]  Huaglory Tianfield,et al.  Towards autonomic computing systems , 2004, Eng. Appl. Artif. Intell..

[21]  Frédéric Vanderhaegen,et al.  Human Behaviour Analysis of Barrier Deviations Using a Benefit-Cost-Deficit Model , 2009, Adv. Hum. Comput. Interact..

[22]  Andrew W. H. Ip,et al.  Measurement of resilience and its application to enterprise information systems , 2010, Enterp. Inf. Syst..

[23]  Bülent Tavli,et al.  Energy efficiency and error resilience in coordinated and non-coordinated medium access control protocols , 2006, Comput. Commun..

[24]  Frédéric Vanderhaegen,et al.  Artificial neural network for violation analysis , 2004, Reliab. Eng. Syst. Saf..

[25]  F. Arreguín-Sánchez,et al.  An inverse relationship between stability and maturity in models of aquatic ecosystems , 2001 .

[26]  Terje Aven,et al.  A risk perspective suitable for resilience engineering , 2011 .

[27]  Mon-Yen Luo,et al.  Enabling fault resilience for web services , 2002, Comput. Commun..

[28]  Frédéric Vanderhaegen,et al.  A Benefit/Cost/Deficit (BCD) model for learning from human errors , 2011, Reliab. Eng. Syst. Saf..

[29]  Frédéric Vanderhaegen,et al.  Toward a model of unreliability to study error prevention supports , 1999, Interact. Comput..

[30]  Frédéric Vanderhaegen Multilevel allocation modes — allocator control policies to share tasks between human and computer , 1999 .

[31]  Fu-Shiung Hsieh,et al.  Developing cooperation mechanism for multi-agent systems with Petri nets , 2009, Eng. Appl. Artif. Intell..

[32]  Erik Hollnagel Achieving System Safety by Resilience Engineering , 2006 .

[33]  Serge Debernard,et al.  Resilience of a human-robot system using adjustable autonomy and human-robot collaborative control , 2009 .

[34]  François-Régis Chevreau,et al.  Approche pratique de la culture de sécurité , 2007 .

[35]  C. S. Holling,et al.  Sustainability, Stability, and Resilience , 1997 .

[36]  Frédéric Vanderhaegen,et al.  A reinforced iterative formalism to learn from human errors and uncertainty , 2009, Eng. Appl. Artif. Intell..

[37]  Sandeep Neema,et al.  Autonomic fault mitigation in embedded systems , 2004, Eng. Appl. Artif. Intell..

[38]  Nei Kato,et al.  Fault-resilient sensing in wireless sensor networks , 2007, Comput. Commun..