Novel simulated moving-bed method for reduced solvent consumption.

Simulated moving-bed (SMB) chromatography is attractive for reducing sorbent and solvent consumption relative to fixed-bed systems. In this contribution, we describe a novel and versatile method for further reducing solvent consumption in the case of reversed-phase chromatography. The method is based on the variation of the distribution coefficients of solutes to be separated upon varying the composition of a multi-component mobile phase. If the solvent strength of the desorbent is set higher than the solvent strength of the feed, the components will have smaller distribution coefficients in the extraction section of the SMB and hence will be more easily eluted. This will result in a lower desorbent flow and possibly also in a shorter desorbent zone, and, ultimately, in more concentrated products. The so-called "Triangle-method" by Storti et al. [AIChE J., 39 (1993) 471] to obtain the region of complete separation, is extended for this novel SMB method. Theoretical evaluation of the proposed methodology supports the anticipated solvent reduction relative to fixed-bed RP-HPLC for the cases of the purification of the polyketide antibiotic nystatin and the separation of bovine insulin from porcine insulin.