A Survey on Applications of Quantified Boolean Formulas

The decision problem of quantified Boolean formulas (QBFs) is the archetypical problem for the complexity class PSPACE. Beside such theoretical aspects QBF also provides an attractive framework for encoding and solving various application problems ranging from symbolic reasoning in artificial intelligence to the formal verification and synthesis of computing systems. In this paper, we survey the different application areas that exploit QBF technology for solving their specific problems.

[1]  Nachum Dershowitz,et al.  Bounded Model Checking with QBF , 2005, SAT.

[2]  Enrico Giunchiglia,et al.  Partially Grounded Planning as Quantified Boolean Formula , 2013, ICAPS.

[3]  Bernd Becker,et al.  On Combining 01X-Logic and QBF , 2007, EUROCAST.

[4]  Dan Smith,et al.  Dominant Controllability Check Using QBF-Solver and Netlist Optimizer , 2014, SAT.

[5]  Bernd Becker,et al.  Accurate QBF-based test pattern generation in presence of unknown values , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[6]  Jussi Rintanen,et al.  Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..

[7]  Roderick Bloem,et al.  Fault Localization and Correction with QBF , 2007, SAT.

[8]  S. Ramesh,et al.  Compositional Verification of Software Product Lines , 2013, IFM.

[9]  Pallab Dasgupta,et al.  A Verification framework for Analyzing Security Implementations in an Enterprise LAN , 2009, 2009 IEEE International Advance Computing Conference.

[10]  Ian P. Gent,et al.  Encoding Connect-4 using Quantified Boolean Formulae , 2003 .

[11]  David Poole,et al.  Explanation and prediction: an architecture for default and abductive reasoning , 1989, Comput. Intell..

[12]  Rolf Drechsler,et al.  Post-verification debugging of hierarchical designs , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[13]  Stefan Woltran,et al.  Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results , 2001, Answer Set Programming.

[14]  Stefan Woltran,et al.  Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas , 2000, AAAI/IAAI.

[15]  Stefan Woltran,et al.  Methods for solving reasoning problems in abstract argumentation – A survey , 2015, Artif. Intell..

[16]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[17]  Florian Lonsing,et al.  The QBF Gallery: Behind the scenes , 2016, Artif. Intell..

[18]  Stefan Woltran,et al.  Experimental Evaluation of the Disjunctive Logic Programming Module of the System QUIP , 2000, WLP.

[19]  Mikolás Janota,et al.  Quantified maximum satisfiability , 2015, Constraints.

[20]  Stefan Woltran,et al.  ccT on Stage: Generalised Uniform Equivalence Testing for Verifying Student Assignment Solutions , 2009, LPNMR.

[21]  Mikolás Janota,et al.  QBf-based boolean function bi-decomposition , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[22]  Daniel Kroening,et al.  Verification of Boolean programs with unbounded thread creation , 2007, Theor. Comput. Sci..

[23]  Karem A. Sakallah,et al.  Computing Vertex Eccentricity in Exponentially Large Graphs: QBF Formulation and Solution , 2003, SAT.

[24]  Robert Wille,et al.  Quantified Synthesis of Reversible Logic , 2008, 2008 Design, Automation and Test in Europe.

[25]  Enrico Giunchiglia,et al.  Planning as Quantified Boolean Formula , 2012, ECAI.

[26]  Klaus Truemper,et al.  An Effective QBF Solver for Planning Problems , 2004, MSV/AMCS.

[27]  Luca Pulina,et al.  The 2016 and 2017 QBF solvers evaluations (QBFEVAL'16 and QBFEVAL'17) , 2019, Artif. Intell..

[28]  Jussi Rintanen Planning and SAT , 2009, Handbook of Satisfiability.

[29]  Rolf Drechsler,et al.  Using QBF to increase accuracy of SAT-based debugging , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[30]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[31]  Donald E. Knuth The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability , 2015 .

[32]  Marco Benedetti,et al.  QBF-Based Formal Verification: Experience and Perspectives , 2008, J. Satisf. Boolean Model. Comput..

[33]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[34]  Bernd Becker,et al.  From DQBF to QBF by Dependency Elimination , 2017, SAT.

[35]  Martin Caminada,et al.  A QBF-based formalization of abstract argumentation semantics , 2013, J. Appl. Log..

[36]  Bart Selman,et al.  The Achilles' Heel of QBF , 2005, AAAI.

[37]  Florian Lonsing,et al.  Conformant planning as a case study of incremental QBF solving , 2016, Annals of Mathematics and Artificial Intelligence.

[38]  Dominique Longin,et al.  Compact Tree Encodings for Planning as QBF , 2018, Inteligencia Artif..

[39]  Daniel Kroening,et al.  Symbolic Model Checking for Asynchronous Boolean Programs , 2005, SPIN.

[40]  Stefan Woltran,et al.  ccT: A Correspondence-Checking Tool for Logic Programs Under the Answer-Set Semantics , 2006, JELIA.

[41]  Stefan Woltran,et al.  Reasoning in Argumentation Frameworks Using Quantified Boolean Formulas , 2006, COMMA.

[42]  Armin Biere,et al.  Compressing BMC Encodings with QBF , 2007, BMC@FLoC.

[43]  Marco Benedetti,et al.  Robust QBF Encodings for Sequential Circuits with Applications to Verification, Debug, and Test , 2010, IEEE Transactions on Computers.

[44]  Florian Lonsing,et al.  Parallel Solving of Quantified Boolean Formulas , 2018, Handbook of Parallel Constraint Reasoning.

[45]  Jussi Rintanen,et al.  Asymptotically Optimal Encodings of Conformant Planning in QBF , 2007, AAAI.

[46]  Mikolás Janota,et al.  The QBFGallery 2014: The QBF Competition at the FLoC Olympic Games , 2014, J. Satisf. Boolean Model. Comput..

[47]  Martina Seidl,et al.  SAT-Based Synthesis Methods for Safety Specs , 2014, VMCAI.

[48]  Diptarama,et al.  QBF Encoding of Generalized Tic-Tac-Toe , 2016, QBF@SAT.

[49]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[50]  Enrico Giunchiglia,et al.  Reasoning with Quantified Boolean Formulas , 2021, Handbook of Satisfiability.

[51]  Stefan Woltran,et al.  On Solution Correspondences in Answer-Set Programming , 2005, IJCAI.

[52]  Mikolás Janota,et al.  PrideMM: A Solver for Relaxed Memory Models , 2018, ArXiv.

[53]  Niklas Eén,et al.  SAT Based Model Checking , 2005 .

[54]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[55]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[56]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[57]  Martin Diller,et al.  Reasoning in Abstract Dialectical Frameworks Using Quantified Boolean Formulas , 2014, COMMA.

[58]  Joao Marques-Silva,et al.  Propositional Abduction with Implicit Hitting Sets , 2016, ECAI.

[59]  Bernd Finkbeiner,et al.  Encodings of Bounded Synthesis , 2017, TACAS.