Scalable nonlinear programming framework for parameter estimation in dynamic biological system models
暂无分享,去创建一个
Sungho Shin | Ophelia S. Venturelli | Ophelia S Venturelli | Victor M Zavala | Sungho Shin | V. Zavala
[1] L. Biegler,et al. A Moving Horizon Estimator for processes with multi-rate measurements: A Nonlinear Programming sensitivity approach , 2012 .
[2] D. Lauffenburger,et al. Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data , 2009, Molecular systems biology.
[3] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[4] L. Biegler. An overview of simultaneous strategies for dynamic optimization , 2007 .
[5] Albert C. Reynolds,et al. Quantifying Uncertainty for the PUNQ-S3 Problem in a Bayesian Setting With RML and EnKF , 2005 .
[6] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[7] L. Biegler,et al. Decomposition algorithms for on-line estimation with nonlinear DAE models , 1995 .
[8] Fabian J. Theis,et al. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks , 2016, bioRxiv.
[9] Katherine H. Huang,et al. Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.
[10] Omar Ghattas,et al. A Randomized Maximum A Posteriori Method for Posterior Sampling of High Dimensional Nonlinear Bayesian Inverse Problems , 2016, SIAM J. Sci. Comput..
[11] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[12] Douglas B. Kell,et al. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..
[13] Heikki Haario,et al. Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[14] Mustafa Khammash,et al. Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..
[15] Lorenz T. Biegler,et al. Optimal sensitivity based on IPOPT , 2012, Math. Program. Comput..
[16] Jiahua Chen,et al. Extended Bayesian information criteria for model selection with large model spaces , 2008 .
[17] Victor M. Zavala,et al. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks , 2017 .
[18] L. Lasdon,et al. Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .
[19] L. Biegler,et al. Nonlinear Programming Strategies for State Estimation and Model Predictive Control , 2009 .
[20] P. Mendes,et al. Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks , 2013, PloS one.
[21] Jonathan M. Garibaldi,et al. Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[22] Jonathan Friedman,et al. Ecological systems biology: The dynamics of interacting populations , 2017 .
[23] Iain Dunning,et al. JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..
[24] David F Anderson,et al. Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models. , 2013, The Journal of chemical physics.
[25] Victor M. Zavala,et al. Clustering-based preconditioning for stochastic programs , 2016, Comput. Optim. Appl..
[26] Yonathan Bard,et al. Nonlinear parameter estimation , 1974 .
[27] M. Wells,et al. Variations and Fluctuations of the Number of Individuals in Animal Species living together , 2006 .
[28] Xin-She Yang,et al. Nature-Inspired Metaheuristic Algorithms , 2008 .
[29] Jonathan R. Karr,et al. A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.
[30] P. Swain,et al. Mechanistic links between cellular trade-offs, gene expression, and growth , 2015, Proceedings of the National Academy of Sciences.
[31] Luís N. Vicente,et al. A particle swarm pattern search method for bound constrained global optimization , 2007, J. Glob. Optim..
[32] G. Kitagawa,et al. Information Criteria and Statistical Modeling , 2007 .
[33] Hiroaki Kitano,et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..
[34] Ophelia S. Venturelli,et al. Deciphering microbial interactions in synthetic human gut microbiome communities , 2017, bioRxiv.
[35] Victor M. Zavala,et al. Computational strategies for the optimal operation of large-scale chemical processes , 2008 .
[36] Albert C. Reynolds,et al. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model , 2013, Computational Geosciences.
[37] Lorenz T. Biegler,et al. Parallel cyclic reduction decomposition for dynamic optimization problems , 2019, Comput. Chem. Eng..
[38] L. Biegler,et al. Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .
[39] Gene H. Golub,et al. Matrix computations , 1983 .
[40] S. E. Ahmed,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.
[41] Colin Fontaine,et al. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks , 2010, Science.
[42] C. Tropini,et al. The Gut Microbiome: Connecting Spatial Organization to Function. , 2017, Cell host & microbe.
[43] Dean S. Oliver,et al. Metropolized Randomized Maximum Likelihood for Improved Sampling from Multimodal Distributions , 2015, SIAM/ASA J. Uncertain. Quantification.
[44] Justin L Sonnenburg,et al. Quantitative Imaging of Gut Microbiota Spatial Organization. , 2015, Cell host & microbe.
[45] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[46] Lorenz T. Biegler,et al. Parameter estimation in metabolic flux balance models for batch fermentation—Formulation & Solution using Differential Variational Inequalities (DVIs) , 2006, Ann. Oper. Res..
[47] Victor M. Zavala,et al. Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .
[48] Gunnar Rätsch,et al. Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota , 2013, PLoS Comput. Biol..
[49] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[50] Li Xie,et al. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions , 2017, eLife.
[51] David Welch,et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.
[52] C. Bottasso,et al. Optimal Control of Multibody Systems Using an Energy Preserving Direct Transcription Method , 2004 .
[53] Victor M. Zavala,et al. Optimization-based strategies for the operation of low-density polyethylene tubular reactors: Moving horizon estimation , 2009, Comput. Chem. Eng..
[54] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[55] Nikolaos Anesiadis,et al. Engineering metabolism through dynamic control. , 2015, Current opinion in biotechnology.
[56] Orkun S. Soyer,et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics , 2016, The ISME Journal.
[57] Carmen G. Moles,et al. Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.
[58] A. J. Lotka. Elements of Physical Biology. , 1925, Nature.
[59] Victor M. Zavala,et al. A Computational Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models , 2016 .
[60] Eva Balsa-Canto,et al. Hybrid optimization method with general switching strategy for parameter estimation , 2008, BMC Systems Biology.
[61] A. Tikhonov,et al. Numerical Methods for the Solution of Ill-Posed Problems , 1995 .
[62] Derek N. Macklin,et al. The future of whole-cell modeling. , 2014, Current opinion in biotechnology.
[63] R. Arditi,et al. Microbial Interactions within a Cheese Microbial Community , 2007, Applied and Environmental Microbiology.
[64] Ophelia S. Venturelli,et al. Population Diversification in a Yeast Metabolic Program Promotes Anticipation of Environmental Shifts , 2014, bioRxiv.
[65] Lorenz T. Biegler,et al. Parameter Estimation in Batch Bioreactor Simulation Using Metabolic Models: Sequential Solution with Direct Sensitivities , 2011 .
[66] John T. Betts,et al. Application of Direct Transcription to Commercial Aircraft Trajectory Optimization , 1995 .
[67] Stan Uryasev,et al. CVaR norm and applications in optimization , 2014, Optim. Lett..
[68] Masahiro Okamoto,et al. Efficient Numerical Optimization Algorithm Based on Genetic Algorithm for Inverse Problem , 2000, GECCO.
[69] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[70] R. Rockafellar,et al. Conditional Value-at-Risk for General Loss Distributions , 2001 .
[71] David L. Woodruff,et al. Pyomo: modeling and solving mathematical programs in Python , 2011, Math. Program. Comput..
[72] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[73] Dean S. Oliver,et al. Metropolized Randomized Maximum Likelihood for sampling from multimodal distributions , 2015 .
[74] Jorge Nocedal,et al. Knitro: An Integrated Package for Nonlinear Optimization , 2006 .
[75] Maksat Ashyraliyev,et al. Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.
[76] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[77] Dean S. Oliver,et al. Conditioning Permeability Fields to Pressure Data , 1996 .
[78] Michael P. H. Stumpf,et al. Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..
[79] David L. Woodruff,et al. Pyomo — Optimization Modeling in Python , 2012, Springer Optimization and Its Applications.
[80] Victor M. Zavala,et al. Nonlinear programming strategies on high-performance computers , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).
[81] Masaru Tomita,et al. Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..
[82] Lorenz T. Biegler,et al. Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .
[83] Kim B. McAuley,et al. Mathematical modelling of chemical processes—obtaining the best model predictions and parameter estimates using identifiability and estimability procedures , 2012 .
[84] Catherine M Lloyd,et al. CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.
[85] Fabian J Theis,et al. Lessons Learned from Quantitative Dynamical Modeling in Systems Biology , 2013, PloS one.