Superconducting Microresonators: Physics and Applications

Interest in superconducting microresonators has grown dramatically over the past decade. Resonator performance has improved substantially through the use of improved geometries and materials as well as a better understanding of the underlying physics. These advances have led to the adoption of superconducting microresonators in a large number of low-temperature experiments and applications. This review outlines these developments, with particular attention given to the use of superconducting microresonators as detectors.

[1]  A. C. Burton,et al.  The phenomena of superconductivity with alternating currents of high frequency , 1932 .

[2]  R. B. Scott,et al.  Superconductivity with Respect to Alternating Currents , 1932 .

[3]  H. London Production of Heat in Supraconductors by Alternating Currents , 1934, Nature.

[4]  J. Daunt,et al.  XXVII. Absorption of infra-red light in supraconductors , 1937 .

[5]  H. London The high-frequency resistance of superconducting tin , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  D. H. Andrews,et al.  Superconducting Films as Radiometric Receivers , 1941 .

[7]  J. B. Garrison,et al.  Superconductivity of Lead at 3-Cm Wave-Length , 1946 .

[8]  A. Pippard The surface impedance of superconductors and normal metals at high frequencies I. Resistance of superconducting tin and mercury at 1200 Mcyc. /sec , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  W. Fairbank High Frequency Surface Resistivity of Tin in the Normal and Superconducting States , 1949 .

[10]  A. Pippard Field variation of the superconducting penetration depth , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  Alfred Brian Pippard,et al.  An experimental and theoretical study of the relation between magnetic field and current in a superconductor , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  W. Fairbank,et al.  Superconductivity at Millimeter Wave Frequencies , 1955 .

[13]  M. Tinkham,et al.  Transmission of Superconducting Films at Millimeter-Microwave and Far Infrared Frequencies , 1956 .

[14]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[15]  R. E. Glover,et al.  Conductivity of superconducting films for photon energies between 0. 3 and 40 kT/sub c/ , 1957 .

[16]  L. Cooper,et al.  Microscopic theory of superconductivity , 1957 .

[17]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[18]  J. Swihart,et al.  Field Solution for a Thin‐Film Superconducting Strip Transmission Line , 1961 .

[19]  B. Taylor,et al.  Superconductors as Quantum Detectors for Microwave and Sub-Millimeter-Wave Radiation , 1961 .

[20]  R. A. Connell Parametric amplification in thin film superconducting transmission lines , 1963 .

[21]  A. Clorfeine Microwave amplification with superconductors , 1964 .

[22]  H. Zimmer,et al.  PARAMETRIC AMPLIFICATION OF MICROWAVES IN SUPERCONDUCTING JOSEPHSON TUNNEL JUNCTIONS , 1967 .

[23]  B. N. Taylor,et al.  Measurement of Recombination Lifetimes in Superconductors , 1967 .

[24]  J. Turneaure,et al.  Microwave Surface Resistance of Superconducting Niobium , 1968 .

[25]  P. V. Mason,et al.  SLOW-WAVE STRUCTURES UTILIZING SUPERCONDUCTING THIN-FILM TRANSMISSION LINES. , 1969 .

[26]  F. Arams,et al.  SUPERCONDUCTING MICROSTRIP HIGH-Q MICROWAVE RESONATORS. , 1971 .

[27]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[28]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[29]  W. Hartwig Superconducting resonators and devices , 1973 .

[30]  Cheng-Chung Chi,et al.  Quasiparticle and phonon lifetimes in superconductors , 1976 .

[31]  A. Septier,et al.  Microwave applications of superconducting materials , 1977 .

[32]  S. Hunklinger,et al.  Saturation of the dielectric absorption of vitreous silica at low temperatures , 1977 .

[33]  Richard L. Kautz,et al.  Picosecond pulses on superconducting striplines , 1978 .

[34]  W. Chang,et al.  The inductance of a superconducting strip transmission line , 1979 .

[35]  T. Klapwijk,et al.  Critical pair-breaking current in superconducting aluminum strips far below T/sub c/ , 1982 .

[36]  R. Popel Measured Temperature-Dependence of Attenuation Constant and Phase Velocity of a Superconducting PbAu/siO/Pb Microstripline at 10 GHz and 30 GHz , 1983 .

[37]  R. Dynes,et al.  Tunneling study of superconductivity near the metal-insulator transition , 1984 .

[38]  D. Schaubert,et al.  Dipole and slot elements and arrays on semi-infinite substrates , 1985 .

[39]  J. Halbritter,et al.  On the oxidation and on the superconductivity of niobium , 1987 .

[40]  W A Phillips Two-level states in glasses , 1987 .

[41]  R. Jankowiak,et al.  On the density of states for two-level systems in amorphous solids , 1987 .

[42]  D. G. McDonald,et al.  Novel superconducting thermometer for bolometric applications , 1987 .

[43]  W. L. Carter,et al.  Kinetic inductance microstrip delay lines , 1987 .

[44]  P. Walsh,et al.  Theory of microwave surface impedance in superconductors and normal metals , 1990 .

[45]  H. A. Schwettman,et al.  The surface impedance of superconductors and normal conductors: The Mattis-Bardeen theory , 1991 .

[46]  Jonas Zmuidzinas,et al.  Quasi-optical slot antenna SIS mixers , 1991 .

[47]  R. Vaglio,et al.  Surface impedance measurements of superconducting (NbTi)N films by a ring microstrip resonator technique , 1993 .

[48]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[49]  G. Yassin,et al.  Electromagnetic models for superconducting millimetre-wave and sub-millimetre-wave microstrip transmission lines , 1995 .

[50]  N. Bluzer Analysis of quantum superconducting kinetic inductance photodetectors , 1995 .

[51]  Beasley,et al.  Nonlinear microwave properties of superconducting Nb microstrip resonators. , 1995, Physical review. B, Condensed matter.

[52]  A. Gulian,et al.  Nonequilibrium dynamic conductivity of superconductors: An exploitable basis for high‐energy resolution x‐ray detectors , 1995 .

[53]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[54]  A. Gulian,et al.  Alternative non-equilibrium superconducting X-ray detectors , 1996 .

[55]  D. J. Goldie,et al.  Single optical photon detection with a superconducting tunnel junction , 1996, Nature.

[56]  A. Sergeev,et al.  PHOTORESPONSE MECHANISMS OF THIN SUPERCONDUCTING FILMS AND SUPERCONDUCTING DETECTORS , 1996 .

[57]  R. Schoelkopf,et al.  A concept for a submillimeter-wave single-photon counter , 1999, IEEE Transactions on Applied Superconductivity.

[58]  C. Holloway,et al.  Conductor loss in superconducting planar structures: calculations and measurements , 1999 .

[59]  K. Irwin,et al.  Superconducting multiplexer for arrays of transition edge sensors , 1999 .

[60]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[61]  L. Frunzio,et al.  Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas. , 2001, Physical review letters.

[62]  H. Walther,et al.  Generation of photon number states on demand via cavity quantum electrodynamics. , 2001, Physical review letters.

[63]  R. Schoelkopf,et al.  Multiplexing of Radio-Frequency Single Electron Transistors , 2002 .

[64]  Jonas Zmuidzinas,et al.  Multiplexable Kinetic Inductance Detectors , 2002 .

[65]  D. Estève,et al.  Density of states in a superconductor carrying a supercurrent. , 2003, Physical review letters.

[66]  J. Zmuidzinas Thermal noise and correlations in photon detection. , 2003, Applied optics.

[67]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[68]  Jonas Zmuidzinas,et al.  Superconducting detectors and mixers for millimeter and submillimeter astrophysics , 2004, Proceedings of the IEEE.

[69]  G. Ciovati,et al.  Effect of low-temperature baking on the radio-frequency properties of niobium superconducting cavities for particle accelerators , 2004 .

[70]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[71]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[72]  Benjamin A. Mazin,et al.  Microwave Kinetic Inductance Detectors , 2005, The WSPC Handbook of Astronomical Instrumentation.

[73]  Andrew D. Greentree,et al.  Quantum phase transitions of light , 2006, cond-mat/0609050.

[74]  Fiona A. Harrison,et al.  Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors , 2006 .

[75]  H. Leduc,et al.  Experimental study of the kinetic inductance fraction of superconducting coplanar waveguide , 2006 .

[76]  Nonlinear dynamics in the resonance line shape of NbN superconducting resonators , 2006, cond-mat/0601146.

[77]  J. Pekola,et al.  Single-mode heat conduction by photons , 2006, Nature.

[78]  Kent D. Irwin,et al.  Digital readouts for large microwave low-temperature detector arrays , 2006 .

[79]  L. Rozema,et al.  On the correct formula for the lifetime broadened superconducting density of states , 2007, 0707.0786.

[80]  E. Tholén,et al.  Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators , 2007, cond-mat/0702280.

[81]  P. Mauskopf,et al.  Lumped Element Kinetic Inductance Detectors , 2008 .

[82]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[83]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[84]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[85]  J. Zmuidzinas,et al.  Equivalence of the Effects on the Complex Conductivity of Superconductor due to Temperature Change and External Pair Breaking , 2008 .

[86]  S. Golwala,et al.  A Millimeter and Submillimeter Kinetic Inductance Detector Camera , 2008 .

[87]  Jonas Zmuidzinas,et al.  Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators , 2008 .

[88]  Shwetank Kumar,et al.  Submillimeter wave camera using a novel photon detector technology , 2008 .

[89]  R. Barends,et al.  Quasiparticle relaxation in optically excited high-Q superconducting resonators. , 2008, Physical review letters.

[90]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[91]  R. Barends,et al.  Contribution of dielectrics to frequency and noise of NbTiN superconducting resonators , 2008, 0804.3499.

[92]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[93]  D. Martin,et al.  Inelastic scattering of quasiparticles in a superconductor with magnetic impurities , 2008 .

[94]  John M. Martinis,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008 .

[95]  UK.,et al.  Magnetic field tuning of coplanar waveguide resonators , 2008, 0805.2818.

[96]  Jiansong Gao,et al.  The physics of superconducting microwave resonators , 2008 .

[97]  J. J. A. Baselmans,et al.  Enhancement of quasiparticle recombination in Ta and Al superconductors by implantation of magnetic and nonmagnetic atoms , 2009 .

[98]  Benjamin A. Mazin,et al.  Microwave Kinetic Inductance Detectors: The First Decade , 2009 .

[99]  S. Moseley Scientific Applications and Promise of Cryogenic Detector Arrays , 2009 .

[100]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[101]  Andrey M. Baryshev,et al.  Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors , 2009 .

[102]  G. Ciovati,et al.  High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments , 2009 .

[103]  M. Weides,et al.  Minimal resonator loss for circuit quantum electrodynamics , 2010, 1005.0408.

[104]  Jonas Zmuidzinas,et al.  Titanium Nitride Films for Ultrasensitive Microresonator Detectors , 2010, 1003.5584.

[105]  Jason Glenn,et al.  MUSIC for sub/millimeter astrophysics , 2010, Astronomical Telescopes + Instrumentation.

[106]  Edward J. Wollack,et al.  Fabrication of an absorber-coupled MKID detector and readout for sub-millimeter and far-infrared astronomy , 2010, Astronomical Telescopes + Instrumentation.

[107]  W. Oliver,et al.  Study of loss in superconducting coplanar waveguide resonators , 2010, 1010.6063.

[108]  Luigi Frunzio,et al.  Tunable superconducting nanoinductors , 2010, Nanotechnology.

[109]  G. C. Hilton,et al.  Strongly quadrature-dependent noise in superconducting micro-resonators measured at the vacuum-noise limit , 2010, 1008.0046.

[110]  Jens Koch,et al.  Time-reversal-symmetry breaking in circuit-QED-based photon lattices , 2010, 1006.0762.

[111]  Jörn Beyer,et al.  Code-division SQUID multiplexing , 2010 .

[112]  P. Wilson,et al.  An open-source readout for MKIDs , 2010, Astronomical Telescopes + Instrumentation.

[113]  J. Schlaerth Microwave Kinetic Inductance Detector Camera Development for Millimeter-Wave Astrophysics , 2010 .

[114]  M. Steffen,et al.  Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators , 2010, 1007.5096.

[115]  J. J. A. Baselmans,et al.  Kinetic inductance detectors (KIDs) for the SAFARI instrument on SPICA , 2010, Astronomical Telescopes + Instrumentation.

[116]  L. Vale,et al.  Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides , 2010 .

[117]  D. Sank,et al.  Thin film dielectric microstrip kinetic inductance detectors , 2010, 1002.0301.

[118]  Back-action-evading measurements of nanomechanical motion , 2009, 0906.0967.

[119]  David Moore,et al.  ARCHONS: a highly multiplexed superconducting optical to near-IR camera , 2010, Astronomical Telescopes + Instrumentation.

[120]  H. Paik,et al.  Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits , 2009, 0908.2948.

[121]  S. Withington,et al.  Readout-power heating and hysteretic switching between thermal quasiparticle states in kinetic inductance detectors , 2010 .

[122]  J. Pekola,et al.  Environment-assisted tunneling as an origin of the Dynes density of states. , 2010, Physical review letters.

[123]  T. Duty,et al.  Photon generation in an electromagnetic cavity with a time-dependent boundary. , 2010, Physical review letters.

[124]  A. Bezryadin,et al.  Superconducting nanowires as nonlinear inductive elements for qubits , 2010, 1007.3951.

[125]  R. Barends,et al.  Reduced frequency noise in superconducting resonators , 2010, 1005.5394.

[126]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[127]  T M Klapwijk,et al.  Number fluctuations of sparse quasiparticles in a superconductor. , 2011, Physical review letters.

[128]  Jiansong Gao,et al.  Two Level System Loss in Superconducting Microwave Resonators , 2011, IEEE Transactions on Applied Superconductivity.

[129]  K. Murch,et al.  Single crystal silicon capacitors with low microwave loss in the single photon regime , 2011, 1102.2917.

[130]  A. Kent,et al.  Measuring the state of a single-molecule magnet with a microstrip resonator , 2011 .

[131]  F. Wellstood,et al.  Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms. , 2011, Physical review letters.

[132]  I. Siddiqi,et al.  Nonlinear microwave response of aluminum weak-link Josephson oscillators , 2011, 1101.4672.

[133]  Erik Lucero,et al.  Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits , 2011 .

[134]  J. J. A. Baselmans,et al.  Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors , 2011, 1107.4330.

[135]  O. Noroozian Superconducting Microwave Resonator Arrays for Submillimeter/Far-infrared Imaging , 2012 .