On finite molecularization domains

In this paper, we advance an ideal-theoretic analogue of a "finite factorization domain" (FFD), giving such a domain the moniker "finite molecularization domain" (FMD). We characterize FMD's as those factorable domains (termed "molecular domains" in the paper) for which every nonzero ideal is divisible by only finitely many nonfactorable ideals (termed "molecules" in the paper) and the monoid of nonzero ideals of the domain is unit-cancellative, in the language of Fan, Geroldinger, Kainrath, and Tringali. We develop a number of connections, particularly at the local level, amongst the concepts of "FMD", "FFD", and the "finite superideal domains" (FSD's) of Hetzel and Lawson. Characterizations of when $k[X^2, X^3]$, where $k$ is a field, and the classical $D+M$ construction are FMD's are provided. We also demonstrate that if $R$ is a Dedekind domain with the finite norm property, then $R[X]$ is an FMD.

[1]  Alfred Geroldinger,et al.  The monotone catenary degree of monoids of ideals , 2017, Int. J. Algebra Comput..

[2]  Anne Grams,et al.  Atomic rings and the ascending chain condition for principal ideals , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  B. Olberding Factorization into prime and invertible ideals II , 2000 .

[4]  D. D. Anderson,et al.  Finite factorization domains , 1996 .

[5]  Floris Ernst,et al.  Multiplicative Ideal Theory , 2004 .

[6]  A. Geroldinger,et al.  Finitary monoids , 2003 .

[7]  S. Hewitt,et al.  2006 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.

[8]  R. G. Swan,et al.  Unique comaximal factorization , 2004 .

[9]  Eduardo Bastida,et al.  Overrings and divisorial ideals of rings of the form $D+M$. , 1973 .

[10]  B. Olberding A principal ideal theorem for compact sets of rank one valuation rings , 2017, 1708.02546.

[11]  R. W. Yeagy,et al.  Factoring Ideals into Semiprime Ideals , 1978, Canadian Journal of Mathematics.

[12]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[13]  J. L. Mott,et al.  Rings with Finite Norm Property , 1972, Canadian Journal of Mathematics.

[14]  D. D. Anderson,et al.  Commutative rings in which every ideal is a product of primary ideals , 1987 .

[15]  Alfred Geroldinger,et al.  Arithmetic of commutative semigroups with a focus on semigroups of ideals and modules , 2016, 1612.03116.

[16]  Andreas Reinhart,et al.  On integral domains that are C-monoids , 2013 .

[17]  Paul Garrett,et al.  Commutative rings I , 2007 .

[18]  PETE L. CLARK,et al.  Factorization in Integral Domains I , 2009 .

[19]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[20]  H. Butts,et al.  Two Criteria for Dedekind Domains , 1966 .

[21]  H. Butts Unique factorization of ideals into nonfactorable ideals , 1964 .

[22]  J. Querré Idéaux divisoriels d'un anneau de polynoˆmes , 1980 .