On the number of pentagons in triangle-free graphs

Using the formalism of flag algebras, we prove that every triangle-free graph G with n vertices contains at most (n/5)^5 cycles of length five. Moreover, the equality is attained only when n is divisible by five and G is the balanced blow-up of the pentagon. We also compute the maximal number of pentagons and characterize extremal graphs in the non-divisible case provided n is sufficiently large. This settles a conjecture made by Erdos in 1984.

[1]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[2]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[3]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[4]  Ervin Györi On the number of C5's in a triangle-free graph , 1989, Comb..

[5]  L. Lovász Operations with structures , 1967 .

[6]  Oleg Pikhurko The minimum size of 3-graphs without a 4-set spanning no or exactly three edges , 2011, Eur. J. Comb..

[7]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[8]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[9]  Michael Krivelevich,et al.  On the Edge Distribution in Triangle-free Graphs , 1995, J. Comb. Theory, Ser. B.

[10]  Benny Sudakov,et al.  Sparse halves in triangle-free graphs , 2006, J. Comb. Theory, Ser. B.

[11]  Alexander Razborov On the Fon-Der-Flaass interpretation of extremal examples for Turán’s (3, 4)-problem , 2010 .

[12]  F. Lazebnik On the Maximum Number of C , 2022 .

[13]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[14]  Alexander A. Razborov,et al.  On 3-Hypergraphs with Forbidden 4-Vertex Configurations , 2010, SIAM J. Discret. Math..

[15]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[16]  Jan Hladký,et al.  Counting flags in triangle-free digraphs , 2009, Electron. Notes Discret. Math..

[17]  Paul Erdös,et al.  How to make a graph bipartite , 1987, J. Comb. Theory, Ser. B.

[18]  Benny Sudakov,et al.  The Turán Number Of The Fano Plane , 2005, Comb..