Finite element approximation for a class of parameter estimation problems

This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations, where the state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. The authors derive some a priori error estimates for both the control and state approximations. Finally, the numerical experiments verify the theoretical results.

[1]  Yunqing Huang,et al.  Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems , 2010, J. Sci. Comput..

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[4]  H. Rui,et al.  Finite Element Approximation of Semilinear Parabolic Optimal Control Problems , 2011 .

[5]  Ningning Yan,et al.  A posteriori error estimates for optimal control problems governed by parabolic equations , 2003, Numerische Mathematik.

[6]  P. Neittaanmäki,et al.  Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications , 1994 .

[7]  Dan Tiba,et al.  ERROR ESTIMATES IN THE APPROXIMATION OF OPTIMIZATION PROBLEMS GOVERNED BY NONLINEAR OPERATORS , 2001 .

[8]  Wenbin Liu,et al.  A Posteriori Error Estimates for Control Problems Governed by Stokes Equations , 2002, SIAM J. Numer. Anal..

[9]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[10]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[11]  Yanping Chen,et al.  Variational discretization for parabolic optimal control problems with control constraints , 2012, J. Syst. Sci. Complex..

[12]  Yanping Chen,et al.  Error estimates of mixed methods for optimal control problems governed by parabolic equations , 2008 .

[13]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[14]  K. Kunisch,et al.  Adaptive Finite Element Approximation for a Class of Parameter Estimation Problems , 2010 .

[15]  Yunqing Huang,et al.  A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations , 2008 .

[16]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[17]  Danping Yang,et al.  A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE , 2008 .

[18]  Tao Feng,et al.  Adaptive finite element methods for the identification of distributed parameters in elliptic equation , 2008, Adv. Comput. Math..

[19]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[20]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .