MAPPING THE MOST MASSIVE OVERDENSITY THROUGH HYDROGEN (MAMMOTH). I. METHODOLOGY

Modern cosmology predicts that a galaxy overdensity (e.g., protocluster) will be associated with a large intergalactic medium gas reservoir, which can be traced by Lyα forest absorption. We have undertaken a systematic study of the relation between Coherently Strong intergalactic Lyα Absorption systems (CoSLAs), which have the highest optical depth (τ) in the τ distribution, and mass overdensities on the scales of ∼10–20 h−1 comoving Mpc. On such large scales, our cosmological simulations show a strong correlation between the effective optical depth (τeff) of the CoSLAs and the three-dimensional mass overdensity. In spectra with moderate signal-to-noise ratio, however, the profiles of CoSLAs can be confused with individual high column density absorbers. For z > 2.6, where the corresponding Lyβ is redshifted to the optical, we have developed a selection technique to distinguish between these two alternatives. We have applied this technique to ∼6000 sight lines provided by Sloan Digital Sky Survey III quasar survey at z = 2.6–3.3 with a continuum-to-noise ratio greater than 8, and we present a sample of five CoSLA candidates with τeff on 15 h−1 Mpc greater than 4.5× the mean optical depth. At lower redshifts of z < 2.6, where the background quasar density is higher, the overdensity can be traced by intergalactic absorption groups using multiple sight lines with small angular separations. Our overdensity searches fully use the current and next generation of Lyα forest surveys, which cover a survey volume of >1 (h−1 Gpc)3. Systems traced by CoSLAs will yield a uniform sample of the most massive overdensities at z > 2 to provide stringent constraints to models of structure formation.

[1]  Garching,et al.  THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF z ∼ 2 QUASARS , 2016, 1604.02942.

[2]  M. McQuinn The Evolution of the Intergalactic Medium , 2015, 1512.00086.

[3]  S. Colombi,et al.  Modelling Lyman α forest cross-correlations with LyMAS , 2015, 1511.04454.

[4]  J. Xavier Prochaska,et al.  THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. III. SAMPLE DEFINITION AND COLUMN DENSITY MEASUREMENTS , 2015, 1506.08863.

[5]  J. Prochaska,et al.  Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.

[6]  K. Lee,et al.  Protocluster discovery in tomographic Ly α forest flux maps , 2014, 1412.1507.

[7]  J. Prochaska,et al.  Directly imaging damped Ly α galaxies at z > 2 – III. The star formation rates of neutral gas reservoirs at z ∼ 2.7 , 2014, 1409.2880.

[8]  A. Slosar,et al.  A GLIMPSE AT QUASAR HOST GALAXY FAR-UV EMISSION USING DAMPED Lyα's AS NATURAL CORONAGRAPHS , 2014, 1408.0829.

[9]  K. Jahnke,et al.  THE PROPERTIES OF Lyα NEBULAE: GAS KINEMATICS FROM NONRESONANT LINES , 2014, 1407.6801.

[10]  Chris Bebek,et al.  The Dark Energy Spectroscopic Instrument (DESI) , 2019, 1907.10688.

[11]  V. Springel,et al.  Damped Lyman α absorbers as a probe of stellar feedback , 2014, 1405.3994.

[12]  A. Dey,et al.  DISCOVERY OF A VERY LARGE STRUCTURE AT Z = 3.78 , 2014, 1405.2620.

[13]  S. Bailey,et al.  IGM CONSTRAINTS FROM THE SDSS-III/BOSS DR9 Lyα FOREST TRANSMISSION PROBABILITY DISTRIBUTION FUNCTION , 2014, 1405.1072.

[14]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[15]  D. York,et al.  A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters , 2014, 1403.4115.

[16]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[17]  George D. Becker,et al.  The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.

[18]  J. Prochaska,et al.  A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar , 2014, Nature.

[19]  Karl Gebhardt,et al.  DISCOVERY OF A LARGE NUMBER OF CANDIDATE PROTOCLUSTERS TRACED BY ∼15 Mpc-SCALE GALAXY OVERDENSITIES IN COSMOS , 2013, 1312.4747.

[20]  Y. Minowa,et al.  EXTENDED Lyα EMISSION FROM A DAMPED Lyα ABSORBER AT z = 3.115 , 2013 .

[21]  Y. Minowa,et al.  Extended Lyman-alpha emission from a high-z DLA at z=3.115 , 2013, 1311.5534.

[22]  Adam D. Myers,et al.  The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.

[23]  K. Gebhardt,et al.  ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.

[24]  D. York,et al.  Probing the circumgalactic medium at high-redshift using composite boss spectra of strong Lyman α forest absorbers , 2013, 1309.6768.

[25]  R. Davé,et al.  On the connection between the intergalactic medium and galaxies: the H i–galaxy cross-correlation at z ≲ 1 , 2013, 1309.5950.

[26]  R. Croft,et al.  OBSERVATIONAL REQUIREMENTS FOR Lyα FOREST TOMOGRAPHIC MAPPING OF LARGE-SCALE STRUCTURE AT z ∼ 2 , 2013, 1309.1477.

[27]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[28]  R. Davé,et al.  THE LBT BOÖTES FIELD SURVEY. I. THE REST-FRAME ULTRAVIOLET AND NEAR-INFRARED LUMINOSITY FUNCTIONS AND CLUSTERING OF BRIGHT LYMAN BREAK GALAXIES AT Z ∼ 3 , 2013, 1307.4835.

[29]  S. Colombi,et al.  LyMAS: PREDICTING LARGE-SCALE Lyα FOREST STATISTICS FROM THE DARK MATTER DENSITY FIELD , 2013, 1306.1533.

[30]  P. Hewett,et al.  A refined measurement of the mean transmitted flux in the Lyα forest over 2 < z < 5 using composite quasar spectra , 2012, 1208.2584.

[31]  A. Myers,et al.  The large-scale quasar-Lyman α forest cross-correlation from BOSS , 2013, 1303.1937.

[32]  J. Prochaska,et al.  THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ≲ 1 , 2013, 1302.5424.

[33]  C. Ledoux,et al.  Mass–metallicity relation from z = 5 to the present: evidence for a transition in the mode of galaxy growth at z = 2.6 due to the end of sustained primordial gas infall , 2013, 1301.5013.

[34]  Adam D. Myers,et al.  Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9 , 2013, 1301.3459.

[35]  E. Malanushenko,et al.  Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9 , 2012, 1210.1213.

[36]  D. York,et al.  The large-scale cross-correlation of Damped Lyman alpha systems with the Lyman alpha forest: first measurements from BOSS , 2012, 1209.4596.

[37]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[38]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[39]  Astrophysics,et al.  The impact of feedback from galaxy formation on the Lyman α transmitted flux , 2012, 1207.6567.

[40]  D. Weinberg,et al.  Hydrogen and Metal Line Absorption Around Low-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2012, 1206.1859.

[41]  A. Myers,et al.  The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.

[42]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[43]  David N. Spergel,et al.  MEAN-FLUX-REGULATED PRINCIPAL COMPONENT ANALYSIS CONTINUUM FITTING OF SLOAN DIGITAL SKY SURVEY Lyα FOREST SPECTRA , 2012 .

[44]  Robin Ciardullo,et al.  THE EVOLUTION OF Lyα-EMITTING GALAXIES BETWEEN z = 2.1 AND z = 3.1 , 2011, 1109.4685.

[45]  K. Lee,et al.  MEAN-FLUX-REGULATED PRINCIPAL COMPONENT ANALYSIS CONTINUUM FITTING OF SLOAN DIGITAL SKY SURVEY Lyα FOREST SPECTRA , 2011, 1108.6080.

[46]  J. Weller,et al.  The non-linear matter power spectrum in warm dark matter cosmologies , 2011, 1107.4094.

[47]  D. Weinberg,et al.  The intergalactic medium over the last 10 billion years - II. Metal-line absorption and physical conditions: Metal-line absorption and physical conditions , 2011, 1106.1444.

[48]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[49]  Adam D. Myers,et al.  The Lyman-α forest in three dimensions: measurements of large scale flux correlations from BOSS 1st-year data , 2011, 1104.5244.

[50]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[51]  Tokyo,et al.  The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3 , 2010, 1010.2877.

[52]  D. Eisenstein,et al.  STRONG FIELD-TO-FIELD VARIATION OF Lyα NEBULAE POPULATIONS AT z ≃ 2.3 , 2010, 1008.2776.

[53]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[54]  Tokyo,et al.  A search for galaxies in and around an HI overdense region at z = 5 , 2010, 1001.1943.

[55]  J. Prochaska,et al.  A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z ∼ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.0292.

[56]  P. Noterdaeme,et al.  Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.

[57]  J. Austermann,et al.  Spatial correlation between submillimetre and Lyman-α galaxies in the SSA 22 protocluster , 2009, Nature.

[58]  S. Furlanetto,et al.  The evolution of the Lyα forest effective optical depth following He ii reionization , 2009, 0901.3966.

[59]  D. Eisenstein,et al.  Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 EXTENDED Lyα NEBULAE AT z ≃ 2.3: AN EXTREMELY RARE AND STRONGLY CLUSTERED POPULATION? 1 , 2022 .

[60]  G. Meylan,et al.  Observations of the Gas Reservoir around a Star-Forming Galaxy in the Early Universe , 2008, 0808.0921.

[61]  Lutz Wisotzki,et al.  An unbiased measurement of the UV background and its evolution via the proximity effect in quasar spectra , 2008, 0807.5089.

[62]  M. Zaldarriaga,et al.  A Flat Photoionization Rate at 2 ≤ z ≤ 4.2: Evidence for a Stellar-Dominated UV Background and against a Decline of Cosmic Star Formation beyond z ~ 3 , 2008, 0806.0372.

[63]  India.,et al.  Metal abundances at z < 1.5: new measurements in sub-damped Lyman α absorbers★ , 2008, 0803.1549.

[64]  R. Davé,et al.  Extended Lyman Alpha Nebulae at z=2.3: An Extremely Rare and Strongly Clustered Population , 2008 .

[65]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[66]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[67]  Cambridge,et al.  Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.

[68]  J. Prochaska,et al.  Survey for Galaxies Associated with z ~ 3 Damped Lyα Systems. II. Galaxy-Absorber Correlation Functions , 2006, astro-ph/0607149.

[69]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[70]  Tristan L. Smith,et al.  Average extinction curves and relative abundances for quasi-stellar object absorption-line systems at 1 ≤zabs < 2 , 2006, astro-ph/0601279.

[71]  S. Okamura,et al.  Large-Scale Filamentary Structure around the Protocluster at Redshift z = 3.1 , 2005, astro-ph/0510762.

[72]  C. Crawford,et al.  A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction , 2005, astro-ph/0510476.

[73]  J. Prochaska,et al.  The SDSS Damped Lyα Survey: Data Release 3 , 2005, astro-ph/0508361.

[74]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3 , 2005, astro-ph/0505122.

[75]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[76]  N. Suzuki,et al.  The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2 , 2005, astro-ph/0504391.

[77]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[78]  S. Okamura,et al.  To Appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE DISCOVERY OF PRIMEVAL LARGE-SCALE STRUCTURES WITH FORMING CLUSTERS AT REDSHIFT 6 1 , 2004 .

[79]  J. Brinkmann,et al.  The Linear Theory Power Spectrum from the Lyα Forest in the Sloan Digital Sky Survey , 2004, astro-ph/0407377.

[80]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[81]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[82]  G. Lewis,et al.  Further Multiwavelength Observations of the SSA 22 Lyα-Emitting Blob , 2003, astro-ph/0310670.

[83]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[84]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[85]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[86]  R. Davé,et al.  Lyman Break Galaxies and the Lyα Forest , 2002, astro-ph/0209563.

[87]  M. Viel,et al.  Galactic Winds in the Intergalactic Medium , 2002, astro-ph/0208418.

[88]  J. Prochaska,et al.  Metallicity Evolution of Damped Lyα Systems in ΛCDM Cosmology , 2002, astro-ph/0203524.

[89]  P. Mcdonald,et al.  Large-Scale Correlation of Mass and Galaxies with the Lyα Forest Transmitted Flux , 2001, astro-ph/0112476.

[90]  G. Williger,et al.  Large-scale structure in the Lyman- α forest II: analysis of a group of ten QSOs , 2019 .

[91]  M. Rauch THE LYMAN ALPHA FOREST IN THE SPECTRA OF QUASISTELLAR OBJECTS , 1998, astro-ph/9806286.

[92]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[93]  R. Abraham,et al.  The Average Mass Profile of Galaxy Clusters , 1997, astro-ph/9703107.

[94]  R. Cen,et al.  Gravitational collapse of small scale structure as the origin of the Lyman alpha forest , 1994, astro-ph/9409017.

[95]  H. Bi Lyman-alpha absorption spectrum of the primordial intergalactic medium , 1993 .

[96]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[97]  R. Davé,et al.  Lyman break galaxies and the Ly alpha forest , 2003 .

[98]  R. Lynds The Absorption-Line Spectrum of 4c 05.34 , 1971 .