Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations

In this paper, a class of high-order central Hermite WENO (HWENO) schemes based on finite volume framework and staggered meshes is proposed for directly solving one- and two-dimensional Hamilton-Jacobi (HJ) equations. The methods involve the Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. This work can be regarded as an extension of central HWENO schemes for hyperbolic conservation laws (Tao et al. J. Comput. Phys. 318, 222–251, 2016) which combine the central scheme and the HWENO spatial reconstructions and therefore carry many features of both schemes. Generally, it is not straightforward to design a finite volume scheme to directly solve HJ equations and a key ingredient for directly solving such equations is the reconstruction of numerical Hamiltonians to guarantee the stability of methods. Benefited from the central strategy, our methods require no numerical Hamiltonians. Meanwhile, the zeroth-order and the first-order moments of the solution are involved in the spatial HWENO reconstructions which is more compact compared with WENO schemes. The reconstructions are implemented through a dimension-by-dimension strategy when the spatial dimension is higher than one. A collection of one- and two- dimensional numerical examples is performed to validate high resolution and robustness of the methods in approximating the solutions of HJ equations, which involve linear, nonlinear, smooth, non-smooth, convex or non-convex Hamiltonians.

[1]  Chi-Wang Shu,et al.  Analysis of the discontinuous Galerkin method for Hamilton—Jacobi equations , 2000 .

[2]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[3]  Jianxian Qiu,et al.  High-order central Hermite WENO schemes: Dimension-by-dimension moment-based reconstructions , 2016, J. Comput. Phys..

[4]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[5]  Jianxian Qiu,et al.  High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws , 2015, J. Comput. Phys..

[6]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[7]  M. Zennaro Natural continuous extensions of Runge-Kutta methods , 1986 .

[8]  Gabriella Puppo,et al.  High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..

[9]  Feng Zheng,et al.  Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes , 2016, J. Comput. Phys..

[10]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[11]  Hong Luo,et al.  A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids , 2012, J. Comput. Phys..

[12]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[13]  Steve Bryson,et al.  High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations , 2013, SIAM J. Numer. Anal..

[14]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[15]  Stanley Osher,et al.  A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations , 2011, J. Comput. Phys..

[16]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[17]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[18]  ShuChi-Wang,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1991 .

[19]  S. Bryson,et al.  High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations , 2013 .

[20]  C. Chan,et al.  High-order schemes for Hamilton-Jacobi equations on triangular meshes , 2004 .

[21]  Eitan Tadmor,et al.  New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .

[22]  P. Lax,et al.  Systems of conservation laws , 1960 .

[23]  Sergey Yakovlev,et al.  A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations , 2010, J. Sci. Comput..

[24]  Yingjie Liu Central schemes on overlapping cells , 2005 .

[25]  J. Qiu WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations , 2007 .

[26]  S. Bryson,et al.  Central Schemes for Multidimensional Hamilton-Jacobi Equations , 2002, SIAM J. Sci. Comput..

[27]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[28]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[29]  Z. Xin,et al.  Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .

[30]  S. Osher,et al.  High Order Two Dimensional Nonoscillatory Methods for Solving Hamilton-Jacobi Scalar Equations , 1996 .

[31]  Chi-Wang Shu,et al.  Hermite WENO schemes for Hamilton-Jacobi equations , 2005 .

[32]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[33]  Steve Bryson,et al.  Central Schemes for Multidimensional Hamilton-Jacobi Equations , 2003, SIAM J. Sci. Comput..

[34]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations , 2007, Journal of Computational Physics.

[35]  Chi-Tien Lin,et al.  $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.

[36]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[37]  Chi-Wang Shu HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS , 2007 .