Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations
暂无分享,去创建一个
[1] Chi-Wang Shu,et al. Analysis of the discontinuous Galerkin method for Hamilton—Jacobi equations , 2000 .
[2] P. Lions,et al. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .
[3] Jianxian Qiu,et al. High-order central Hermite WENO schemes: Dimension-by-dimension moment-based reconstructions , 2016, J. Comput. Phys..
[4] P. Lions,et al. Viscosity solutions of Hamilton-Jacobi equations , 1983 .
[5] Jianxian Qiu,et al. High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws , 2015, J. Comput. Phys..
[6] Chi-Tien Lin,et al. High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[7] M. Zennaro. Natural continuous extensions of Runge-Kutta methods , 1986 .
[8] Gabriella Puppo,et al. High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..
[9] Feng Zheng,et al. Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes , 2016, J. Comput. Phys..
[10] Rémi Abgrall,et al. High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..
[11] Hong Luo,et al. A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids , 2012, J. Comput. Phys..
[12] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[13] Steve Bryson,et al. High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations , 2013, SIAM J. Numer. Anal..
[14] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[15] Stanley Osher,et al. A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations , 2011, J. Comput. Phys..
[16] J. Sethian,et al. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .
[17] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[18] ShuChi-Wang,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1991 .
[19] S. Bryson,et al. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations , 2013 .
[20] C. Chan,et al. High-order schemes for Hamilton-Jacobi equations on triangular meshes , 2004 .
[21] Eitan Tadmor,et al. New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .
[22] P. Lax,et al. Systems of conservation laws , 1960 .
[23] Sergey Yakovlev,et al. A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations , 2010, J. Sci. Comput..
[24] Yingjie Liu. Central schemes on overlapping cells , 2005 .
[25] J. Qiu. WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations , 2007 .
[26] S. Bryson,et al. Central Schemes for Multidimensional Hamilton-Jacobi Equations , 2002, SIAM J. Sci. Comput..
[27] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[28] Chi-Wang Shu,et al. High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..
[29] Z. Xin,et al. Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .
[30] S. Osher,et al. High Order Two Dimensional Nonoscillatory Methods for Solving Hamilton-Jacobi Scalar Equations , 1996 .
[31] Chi-Wang Shu,et al. Hermite WENO schemes for Hamilton-Jacobi equations , 2005 .
[32] Chi-Wang Shu,et al. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[33] Steve Bryson,et al. Central Schemes for Multidimensional Hamilton-Jacobi Equations , 2003, SIAM J. Sci. Comput..
[34] Chi-Wang Shu,et al. A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations , 2007, Journal of Computational Physics.
[35] Chi-Tien Lin,et al. $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.
[36] Michael Dumbser,et al. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..
[37] Chi-Wang Shu. HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS , 2007 .