Empirical Bayesian Inference using Joint Sparsity

This paper develops a new empirical Bayesian inference algorithm for solving a linear inverse problem given multiple measurement vectors (MMV) of under-sampled and noisy observable data. Specifically, by exploiting the joint sparsity across the multiple measurements in the sparse domain of the underlying signal or image, we construct a new support informed sparsity promoting prior. Several applications can be modeled using this framework, and as a prototypical example we consider reconstructing an image from synthetic aperture radar (SAR) observations using nearby azimuth angles. Our numerical experiments demonstrate that using this new prior not only improves accuracy of the recovery, but also reduces the uncertainty in the posterior when compared to standard sparsity producing priors.

[1]  Christian P. Robert,et al.  Introducing Monte Carlo Methods with R , 2009 .

[2]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[3]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[4]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  Anne Gelb,et al.  Joint Sparse Recovery Based on Variances , 2019, SIAM J. Sci. Comput..

[7]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[10]  Anne Gelb,et al.  Joint image formation and two-dimensional autofocusing for synthetic aperture radar data , 2018, J. Comput. Phys..

[11]  Johnathan M. Bardsley,et al.  MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..

[12]  Nicholas G. Polson,et al.  Lasso Meets Horseshoe: A Survey , 2017, Statistical Science.

[13]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[14]  Daniela Calvetti,et al.  Hybrid solver for hierarchical Bayesian inverse problems , 2020 .

[15]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[16]  Anne Gelb,et al.  Reducing Effects of Bad Data Using Variance Based Joint Sparsity Recovery , 2018, J. Sci. Comput..

[17]  Anne Gelb,et al.  Composite SAR imaging using sequential joint sparsity , 2017, J. Comput. Phys..

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  T. Scarnati Anne Gelb,et al.  Accurate and Efficient Image Reconstruction from Multiple Measurements of Fourier Samples , 2020, Journal of Computational Mathematics.

[20]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[21]  D. Calvetti,et al.  Sparse reconstructions from few noisy data: analysis of hierarchical Bayesian models with generalized gamma hyperpriors , 2020, Inverse Problems.

[22]  Rick Archibald,et al.  Image Reconstruction from Undersampled Fourier Data Using the Polynomial Annihilation Transform , 2016, J. Sci. Comput..

[23]  Anne Gelb,et al.  Detection of Edges in Spectral Data , 1999 .

[24]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[25]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[26]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[27]  Rick Archibald,et al.  Polynomial Fitting for Edge Detection in Irregularly Sampled Signals and Images , 2005, SIAM J. Numer. Anal..

[28]  Anne Gelb,et al.  Detecting Edges from Non-uniform Fourier Data via Sparse Bayesian Learning , 2018, J. Sci. Comput..

[29]  Aki Vehtari,et al.  Sparsity information and regularization in the horseshoe and other shrinkage priors , 2017, 1707.01694.

[30]  Rick Archibald,et al.  Reducing the Effects of Noise in Image Reconstruction , 2002, J. Sci. Comput..

[31]  Anne Gelb,et al.  Adaptive Edge Detectors for Piecewise Smooth Data Based on the minmod Limiter , 2006, J. Sci. Comput..

[32]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[33]  Image reconstruction from nonuniform Fourier data , 2011 .