Prediction and analysis of protein structure

[1]  D. Parry,et al.  Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. , 2008, Journal of structural biology.

[2]  William R. Taylor,et al.  Structure Comparison and Structure Patterns , 2000, J. Comput. Biol..

[3]  N. Grishin Fold change in evolution of protein structures. , 2001, Journal of structural biology.

[4]  D. Hilvert,et al.  Protein design by directed evolution. , 2008, Annual review of biophysics.

[5]  K. Yutzey,et al.  Heart Valve Development: Regulatory Networks in Development and Disease , 2009, Circulation research.

[6]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[7]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. Taylor Protein structure comparison using iterated double dynamic programming , 2008, Protein science : a publication of the Protein Society.

[9]  H. Ashe BMP Signalling: Synergy and Feedback Create a Step Gradient , 2005, Current Biology.

[10]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[11]  C. Toyoshima,et al.  How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. , 2009, Biochimica et biophysica acta.

[12]  Stefan Raunser,et al.  Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. , 2009, Annual review of biophysics.

[13]  Liisa Holm,et al.  DaliLite workbench for protein structure comparison , 2000, Bioinform..

[14]  William R Taylor,et al.  Prediction of protein structure from ideal forms , 2008, Proteins.

[15]  Kuang Lin,et al.  A simple and fast secondary structure prediction method using hidden neural networks , 2005, Bioinform..

[16]  W R Taylor Searching for the ideal forms of proteins. , 2000, Biochemical Society transactions.

[17]  B. Rost,et al.  Alignments grow, secondary structure prediction improves , 2002, Proteins.

[18]  D J Prockop,et al.  Collagens: molecular biology, diseases, and potentials for therapy. , 1995, Annual review of biochemistry.

[19]  Lars Skjærven,et al.  Normal mode analysis for proteins , 2009 .

[20]  David R. Gilbert,et al.  TOPS: an enhanced database of protein structural topology , 2004, Nucleic Acids Res..

[21]  William R. Taylor,et al.  A ‘periodic table’ for protein structures , 2002, Nature.

[22]  William R. Taylor,et al.  Protein model refinement using structural fragment tessellation , 2006, Comput. Biol. Chem..

[23]  Aled Edwards,et al.  Large-scale structural biology of the human proteome. , 2009, Annual review of biochemistry.

[24]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[25]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[26]  Ille C. Gebeshuber,et al.  Biotribology inspires new technologies , 2007 .

[27]  T. P. Flores,et al.  An algorithm for automatically generating protein topology cartoons. , 1994, Protein engineering.

[28]  A V Finkelstein,et al.  The classification and origins of protein folding patterns. , 1990, Annual review of biochemistry.

[29]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[30]  William R Taylor,et al.  Dynamic domain threading , 2006, Proteins.

[31]  T. Pawson,et al.  Protein-protein interactions define specificity in signal transduction. , 2000, Genes & development.

[32]  William R Taylor,et al.  De novo backbone scaffolds for protein design , 2009, Proteins.

[33]  C. Chothia One thousand families for the molecular biologist , 1992, Nature.

[34]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[35]  M. Guler,et al.  Self-assembled peptidic nanostructures , 2009 .

[36]  H. Hartley Origin of the Word ‘Protein’ , 1951, Nature.

[37]  W R Taylor,et al.  Protein structure comparison using SAP. , 2000, Methods in molecular biology.

[38]  A. Lesk,et al.  The relation between the divergence of sequence and structure in proteins. , 1986, The EMBO journal.

[39]  H. Höcker,et al.  Chapter 4. Cytomechanics of hair basics of the mechanical stability. , 2009, International review of cell and molecular biology.

[40]  T. Schlick Molecular modeling and simulation , 2002 .

[41]  David R. Gilbert,et al.  Motif-based searching in TOPS protein topology databases , 1999, Bioinform..

[42]  W. Taylor,et al.  Multiple sequence threading: an analysis of alignment quality and stability. , 1997, Journal of molecular biology.

[43]  W R Taylor,et al.  Defining linear segments in protein structure. , 2001, Journal of molecular biology.

[44]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[45]  William R Taylor,et al.  Protein fold comparison by the alignment of topological strings. , 2003, Protein engineering.

[46]  M. Young,et al.  A library of protein cage architectures as nanomaterials. , 2009, Current topics in microbiology and immunology.

[47]  K. Hinsen Normal Mode Theory and Harmonic Potential Approximations , 2005 .

[48]  C. Orengo,et al.  Correlation of observed fold frequency with the occurrence of local structural motifs. , 1999, Journal of molecular biology.

[49]  Feng Ding,et al.  Simple but predictive protein models. , 2005, Trends in biotechnology.

[50]  O. Ptitsyn,et al.  Why do globular proteins fit the limited set of folding patterns? , 1987, Progress in biophysics and molecular biology.

[51]  J. Sumner THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .

[52]  I. Bahar,et al.  Coarse-grained normal mode analysis in structural biology. , 2005, Current opinion in structural biology.