MXene molecular sieving membranes for highly efficient gas separation

Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.Two-dimensional materials show great potential for membrane technologies, but their disordered channels hinder their molecular sieving performance. Here, Wang, Gogotsi and colleagues design a MXene membrane with ordered nanochannels that exhibits an excellent H2/CO2 gas separation performance.

[1]  T. Nenoff,et al.  Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[2]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[3]  Jie Shen,et al.  Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. , 2016, ACS nano.

[4]  L. Francis,et al.  Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane , 2011, Science.

[5]  Yury Gogotsi,et al.  Mxenes: A New Family of Two-Dimensional Materials and Its Application As Electrodes for Li and Na-Ion Batteries , 2015 .

[6]  G. Zhu,et al.  Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by ‘dual-metal-source’ approach , 2013 .

[7]  Gang Xu,et al.  Ion sieving in graphene oxide membranes via cationic control of interlayer spacing , 2017, Nature.

[8]  Y. S. Lin,et al.  Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance , 2012 .

[9]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[10]  Donghun Kim,et al.  Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets , 2017, Nature.

[11]  M. Tsapatsis 2‐dimensional zeolites , 2014 .

[12]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[13]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[14]  Chuanxiang Zhang,et al.  Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process , 2016, Electronic Materials Letters.

[15]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[16]  Sankar Nair,et al.  Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. , 2015, Journal of the American Chemical Society.

[17]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[18]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[19]  M. Strano,et al.  Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. , 2015, Nature nanotechnology.

[20]  Fangyi Liang,et al.  Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation , 2010 .

[21]  D. Cao,et al.  Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks , 2015 .

[22]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[23]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[24]  H. Verweij,et al.  High-selectivity, high-flux silica membranes for gas separation , 1998, Science.

[25]  Explore Configuring,et al.  A Simulation Study to , 2004 .

[26]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[27]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[28]  R. Noble,et al.  Designing the Next Generation of Chemical Separation Membranes , 2011, Science.

[29]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[30]  Yury Gogotsi,et al.  NMR reveals the surface functionalisation of Ti3C2 MXene. , 2016, Physical chemistry chemical physics : PCCP.

[31]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[32]  Wanqin Jin,et al.  Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. , 2016, Angewandte Chemie.

[33]  Miao Yu,et al.  Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation , 2013, Science.

[34]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[35]  Lei Jiang,et al.  Nanofluidics in two-dimensional layered materials: inspirations from nature. , 2017, Chemical Society reviews.

[36]  R. Karnik,et al.  Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. , 2015, Nature nanotechnology.

[37]  J. Caro,et al.  A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. , 2017, Angewandte Chemie.

[38]  Rees B Rankin,et al.  Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study , 2009 .

[39]  Jing Kong,et al.  Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. , 2014, Nano letters.

[40]  D. Sholl,et al.  Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH4/H2 and CO2/CH4 Mixtures in ZIFs , 2011 .

[41]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[42]  Ting Yang,et al.  Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification , 2011 .

[43]  A. Myers,et al.  Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment , 2001 .

[44]  Michel W. Barsoum,et al.  MAX Phases: Properties of Machinable Ternary Carbides and Nitrides , 2013 .

[45]  S. Du,et al.  Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene , 2017 .

[46]  Miao Yu,et al.  Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification. , 2017, Nano letters.

[47]  D. Farrusseng,et al.  Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2 , 2011 .

[48]  K. M. Gupta,et al.  Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation , 2017, Nature Communications.

[49]  J. Caro,et al.  Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. , 2014, Journal of the American Chemical Society.

[50]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[51]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[52]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[53]  T. Cabioc’h,et al.  Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups. , 2016, Physical chemistry chemical physics : PCCP.

[54]  Shaohui Li,et al.  New Membrane Architecture with High Performance: ZIF-8 Membrane Supported on Vertically Aligned ZnO Nanorods for Gas Permeation and Separation , 2014 .

[55]  M. Sahimi,et al.  Silicon carbide membranes for gas separation applications , 2007 .

[56]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[57]  R. Ahuja,et al.  Bonding and classification of nanolayered ternaray carbides , 2004 .

[58]  Sarah J. Haigh,et al.  Tunable sieving of ions using graphene oxide membranes. , 2017, Nature nanotechnology.

[59]  M. Eswaramoorthy,et al.  High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency , 2016 .

[60]  Liangjun Hu,et al.  Ultrathin membranes of single-layered MoS₂ nanosheets for high-permeance hydrogen separation. , 2015, Nanoscale.

[61]  Quan‐Fu An,et al.  Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration , 2015 .

[62]  Heng Wu,et al.  Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. , 2016, ACS applied materials & interfaces.

[63]  Christopher J. Fennell,et al.  Field-SEA: A Model for Computing the Solvation Free Energies of Nonpolar, Polar, and Charged Solutes in Water , 2013, The journal of physical chemistry. B.

[64]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[65]  Tom K. Woo,et al.  Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption , 2013 .

[66]  Luda Wang,et al.  Selective molecular sieving through porous graphene. , 2012, Nature nanotechnology.

[67]  D. Sholl Understanding macroscopic diffusion of adsorbed molecules in crystalline nanoporous materials via atomistic simulations. , 2006, Accounts of chemical research.

[68]  Yury Gogotsi,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. , 2011 .

[69]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[70]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[71]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[72]  L. Robeson,et al.  The upper bound revisited , 2008 .

[73]  V. Valtchev,et al.  Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2. , 2016, Journal of the American Chemical Society.

[74]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[75]  A. Sinitskii,et al.  Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes , 2016 .

[76]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[77]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[78]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[79]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[80]  Michael Tsapatsis,et al.  A highly crystalline layered silicate with three-dimensionally microporous layers , 2003, Nature materials.