Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain

In this paper, we prove some logarithmically improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain.

[1]  Hyunseok Kim,et al.  A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier-Stokes Equations , 2006, SIAM J. Math. Anal..

[2]  H. Triebel Theory Of Function Spaces , 1983 .

[3]  Jishan Fan,et al.  Regularity criteria for the 3D density-dependent Boussinesq equations , 2009 .

[4]  Xiaoli Li,et al.  Global strong solution to the density-dependent incompressible flow of liquid crystals , 2012, 1202.1011.

[5]  T. Ozawa,et al.  Regularity criteria for the generalized Navier-Stokes and related equations , 2008, Differential and Integral Equations.

[6]  Yong Zhou,et al.  Logarithmically Improved Regularity Criteria for the Navier–Stokes and MHD Equations , 2011 .

[7]  L. Berselli,et al.  On a theorem by Sohr for the Navier-Stokes equations , 2004 .

[8]  T. Ogawa,et al.  On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain , 2003 .

[9]  Hongjun Gao,et al.  Regularity criteria for the Navier–Stokes–Landau–Lifshitz system , 2010 .

[10]  Marko Antonio Rojas-Medar,et al.  Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model , 2009 .

[11]  H. Beirao da Veiga,et al.  Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space , 1985 .

[12]  L. Berselli On a regularity criterion for the solutions to the 3D Navier-Stokes equations , 2002, Differential and Integral Equations.

[13]  J. Ericksen,et al.  Hydrostatic theory of liquid crystals , 1962 .

[14]  Raphaël Danchin,et al.  Density-Dependent Incompressible Fluids in Bounded Domains , 2006 .

[15]  L. Berselli,et al.  On the Boussinesq system: regularity criteria and singular limits , 2011 .

[16]  TAKAYOSHI OGAWA,et al.  Sharp Sobolev Inequality of Logarithmic Type and the Limiting Regularity Condition to the Harmonic Heat Flow , 2003, SIAM J. Math. Anal..

[17]  H. Beirão da Veiga,et al.  Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory , 2010 .

[18]  Yong Zhou,et al.  Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces , 2009 .

[19]  L. Berselli Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier–Stokes equations , 2009 .

[20]  Yong Zhou,et al.  Logarithmically improved regularity criteria for the 3D viscous MHD equations , 2012 .

[21]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[22]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[23]  H. Sohr A regularity class for the Navier-Stokes equations in Lorentz spaces , 2001 .