Tracking of a Mobile Target Using Generalized Polarization Tensors

In this paper we consider the inverse conductivity problem in two dimensions. We apply an extended Kalman filter to track both the location and the orientation of a small target in motion from multistatic response measurements. We also analyze the effect of the limited-view aspect on the stability and the efficiency of our tracking approach. Our algorithm is based on the use of the generalized polarization tensors, which can be reconstructed from the multistatic response measurements by simply solving a linear system. The reconstruction problem of generalized polarization tensors from multistatic response measurements has the remarkable property that low order generalized polarization tensors are not affected by the error caused by the instability of higher orders in the presence of measurement noise.

[1]  Habib Ammari,et al.  Boundary layer techniques for deriving the effective properties of composite materials , 2005 .

[2]  Yves Capdeboscq,et al.  Numerical computation of approximate generalized polarization tensors , 2011, 1110.1022.

[3]  Josselin Garnier,et al.  Target Identification Using Dictionary Matching of Generalized Polarization Tensors , 2014, Found. Comput. Math..

[4]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .

[5]  B. Borden,et al.  Imaging moving targets from scattered waves , 2008 .

[6]  Josselin Garnier,et al.  Level-Set Based Shape Reconstruction Using the Generalized Polarization Tensors , 2011 .

[7]  Habib Ammari,et al.  The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion , 2012, Math. Comput..

[8]  Habib Ammari,et al.  Enhancement of Near Cloaking Using Generalized Polarization Tensors Vanishing Structures. Part I: The Conductivity Problem , 2011, Communications in Mathematical Physics.

[9]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[10]  Michael O. Kolawole,et al.  Estimation and tracking , 2002 .

[11]  S. Mallat A wavelet tour of signal processing , 1998 .

[12]  P. Heywood Trigonometric Series , 1968, Nature.

[13]  G. Milton The Theory of Composites , 2002 .

[14]  Josselin Garnier,et al.  Generalized polarization tensors for shape description , 2014, Numerische Mathematik.

[15]  Habib Ammari,et al.  High-Order Terms in the Asymptotic Expansions of the Steady-State Voltage Potentials in the Presence of Conductivity Inhomogeneities of Small Diameter , 2003, SIAM J. Math. Anal..

[16]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[17]  Yvan R. Petillot,et al.  Detection and Tracking of Multiple Metallic Objects in Millimetre-Wave Images , 2007, International Journal of Computer Vision.

[18]  Jules S. Jaffe,et al.  Target localization for a three-dimensional multibeam sonar imaging system , 1999 .

[19]  Avner Friedman,et al.  Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence , 1989 .

[20]  Yonina C. Eldar,et al.  Nonuniform Sampling of Periodic Bandlimited Signals , 2008, IEEE Transactions on Signal Processing.

[21]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[22]  Josselin Garnier,et al.  Modeling Active Electrolocation in Weakly Electric Fish , 2012, SIAM J. Imaging Sci..

[23]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[24]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[25]  Han Wang,et al.  Shape Identification and Classification in Echolocation , 2014, SIAM J. Imaging Sci..

[26]  Daniel E. Clark,et al.  Particle PHD filter multiple target tracking in sonar image , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Thomas B. A. Senior,et al.  Low‐frequency scattering , 1973 .

[28]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[29]  Habib Ammari,et al.  The generalized polarization tensors for resolved imaging Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements , 2012, Math. Comput..

[30]  Majid Mirmehdi,et al.  Detection and Tracking of Very Small Low Contrast Objects , 1998, BMVC.

[31]  Hyeonbae Kang,et al.  Properties of the Generalized Polarization Tensors , 2003, Multiscale Model. Simul..