Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT

This survey reviews the basic notions of parameterized complexity, and describes some new approaches to designing FPT algorithms and problem reductions for graph problems.

[1]  Gerhard J. Woeginger,et al.  A Faster FPT Algorithm for Finding Spanning Trees with Many Leaves , 2003, MFCS.

[2]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[3]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[4]  Rolf Niedermeier,et al.  Refined Search Tree Technique for DOMINATING SET on Planar Graphs , 2001, MFCS.

[5]  Weijia Jia,et al.  An efficient parameterized algorithm for m-set packing , 2004, J. Algorithms.

[6]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[7]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[8]  Michael R. Fellows,et al.  On Well-Partial-Order Theory and its Application to Combinatorial Problems of VLSI Design , 1989, SIAM J. Discret. Math..

[9]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  Christian Sloper,et al.  Either/Or: Using Vertex Cover Structure in Designing FPT-Algorithms - The Case of k-Internal Spanning Tree , 2003, WADS.

[11]  Ron Shamir,et al.  The maximum subforest problem: approximation and exact algorithms , 1998, SODA '98.

[12]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[13]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[14]  Klaus Jansen,et al.  Polynomial-time approximation schemes for geometric graphs , 2001, SODA '01.

[15]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[16]  Rolf Niedermeier,et al.  Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case , 2002, SWAT.

[17]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[18]  Michael R. Fellows,et al.  An FPT Algorithm for Set Splitting , 2003, WG.

[19]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[20]  Sanjeev Khanna,et al.  A PTAS for the multiple knapsack problem , 2000, SODA '00.

[21]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[22]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests and Depth First Search , 1989, WADS.

[23]  Sanjeev Arora,et al.  Nearly linear time approximation schemes for Euclidean TSP and other geometric problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[24]  Ulrike Stege,et al.  Solving large FPT problems on coarse-grained parallel machines , 2003, J. Comput. Syst. Sci..

[25]  Liming Cai,et al.  Subexponential Parameterized Algorithms Collapse the W-Hierarchy , 2001, ICALP.

[26]  Michael R. Fellows,et al.  Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Problems , 2000, FSTTCS.

[27]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[28]  Liming Cai,et al.  On the parameterized complexity of short computation and factorization , 1997, Arch. Math. Log..

[29]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[30]  R. Downey,et al.  Parameterized Computational Feasibility , 1995 .

[31]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[32]  Luca Trevisan,et al.  On the Efficiency of Polynomial Time Approximation Schemes , 1997, Inf. Process. Lett..