Operator precedence and the visibly pushdown property

[email protected]?s operator precedence grammars and languages (FG, FL) are a classical subclass of deterministic context-free (DCF) grammars and languages. We prove that several recently introduced language families motivated by the needs of model checking and of specifying XML-like languages are proper subsets of FL. The main cases considered include visibly pushdown languages (VPL) and balanced languages (BALAN), which are characterized by restricted precedence relations. FL have all the closure properties available for regular languages and generally viewed as necessary for application to model checking: reversal, prefixing and suffixing, concatenation, Kleene star, and boolean operations. All but the last results are new, and some require complex proofs, due to the necessary changes of syntax structure. Thus FL are the largest known subfamily of DCF having the same closure properties as VPL. FG, unlike VPL grammars, which are intended for abstract syntax modelling, are structurally adequate to specify real programming languages.

[1]  Donald E. Knuth,et al.  A Characterization of Parenthesis Languages , 1967, Inf. Control..

[2]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[3]  Giovanni Guida,et al.  Operator Precedence Grammars and the Noncounting Property , 1981, SIAM J. Comput..

[4]  Stefano Crespi-Reghizzi,et al.  Algebraic Properties of Operator Precedence Languages , 1978, Inf. Control..

[5]  Giovanni Guida,et al.  Noncounting Context-Free Languages , 1978, JACM.

[6]  Jean Berstel,et al.  Balanced Grammars and Their Languages , 2002, Formal and Natural Computing.

[7]  Stefano Crespi-Reghizzi,et al.  The use of grammatical inference for designing programming languages , 1973, Commun. ACM.

[8]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[9]  Stefano Crespi-Reghizzi,et al.  Operator Precedence and the Visibly Pushdown Property , 2010, LATA.

[10]  Kees Hemerik,et al.  Towards a Taxonomy for ECFG and RRPG Parsing , 2009, LATA.

[11]  Matteo Pradella,et al.  Precedence Automata and Languages , 2011, CSR.

[12]  Robert McNaughton,et al.  Parenthesis Grammars , 1967, JACM.

[13]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[14]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[15]  Didier Caucal,et al.  Synchronization of Grammars , 2008, CSR.

[16]  Didier Caucal Synchronization of Pushdown Automata , 2006, Developments in Language Theory.

[17]  K. Mehlhorn Pebbling Moutain Ranges and its Application of DCFL-Recognition , 1980, ICALP.

[18]  Antoine Meyer,et al.  On the Complexity of Membership and Counting in Height-Deterministic Pushdown Automata , 2008, CSR.

[19]  Michael J. Fischer Some properties of precedence languages , 1969, STOC '69.

[20]  James W. Thatcher,et al.  Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory , 1967, J. Comput. Syst. Sci..

[21]  Alexander Okhotin Boolean grammars , 2004, Inf. Comput..

[22]  Ceriel J. H. Jacobs,et al.  Parsing Techniques - A Practical Guide , 2007, Monographs in Computer Science.

[23]  Jirí Srba,et al.  Height-Deterministic Pushdown Automata , 2007, MFCS.

[24]  Amir Pnueli,et al.  Beyond Regular Model Checking , 2001, FSTTCS.

[25]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[26]  Burchard von Braunmühl,et al.  Input-Driven Languages are Recognized in log n Space , 1983, FCT.

[27]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[28]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[29]  Robert W. Floyd,et al.  Syntactic Analysis and Operator Precedence , 1963, JACM.