Application and System Design of Elastomer Based Optofluidic Lenses

[1]  A. Casner,et al.  Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid liquid interface. , 2001, Optics letters.

[2]  Susumu Sato,et al.  Variable-Focus Liquid-Crystal Fresnel Lens , 1985 .

[3]  David R. Williams,et al.  Off-axis optical quality and retinal sampling in the human eye , 1996, Vision Research.

[4]  Yeshaiahu Fainman,et al.  Pneumatically actuated adaptive lenses with millisecond response time , 2007 .

[5]  P Artal,et al.  Average optical performance of the human eye as a function of age in a normal population. , 1999, Investigative ophthalmology & visual science.

[6]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[7]  J. Schwiegerling Scaling Zernike expansion coefficients to different pupil sizes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[9]  Stephen A. Burns,et al.  Imperfect optics may be the eye's defence against chromatic blur , 2002, Nature.

[10]  V. Mahajan Aberration Theory Made Simple , 1991 .

[11]  Randall Lee Marks Fluidic astigmatic and spherical lenses for ophthalmic applications , 2010 .

[12]  J. H. Smith,et al.  A New Analytical Solution for Diaphragm Deflection and its Application to a Surface-Micromachined Pressure Sensor , 1999 .

[13]  De-Ying Zhang,et al.  Integrated fluidic adaptive zoom lens. , 2004, Optics letters.

[14]  Gerhard Tröster,et al.  Oscillating fluid lens in coherent retinal projection displays for extending depth of focus , 2005 .

[15]  D. Sliney,et al.  Safety with Lasers and Other Optical Sources , 1980, Springer US.

[16]  W. Kühnel,et al.  Measurements of the mechanical behaviour of micromachined silicon and silicon-nitride membranes for microphones, pressure sensors and gas flow meters , 1994 .

[17]  G. C. Knollman,et al.  Variable‐Focus Liquid‐Filled Hydroacoustic Lens , 1971 .

[18]  M. R. Dodge,et al.  Tunable-focus flat liquid-crystal diffractive lens. , 2010, Optics letters.

[19]  Luke P. Lee,et al.  Optofluidics: Fundamentals, Devices, and Applications , 2009 .

[20]  M. Daimon,et al.  Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. , 2007, Applied optics.

[21]  Antonin Miks,et al.  Analysis of three-element zoom lens based on refractive variable-focus lenses. , 2011, Optics express.

[22]  E. Ventsel,et al.  Thin Plates and Shells: Theory: Analysis, and Applications , 2001 .

[23]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[24]  David A. Atchison,et al.  Optics of the Human Eye , 2023 .

[25]  Gholam A. Peyman,et al.  Nonmechanical bifocal zoom telescope. , 2010, Optics letters.

[26]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  N. Sugiura,et al.  Variable-focus liquid-filled optical lens. , 1993, Applied optics.

[28]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[29]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[30]  L. Thibos,et al.  Standards for reporting the optical aberrations of eyes. , 2002, Journal of refractive surgery.

[31]  Steve Serati,et al.  Liquid crystal based active optics , 2006, SPIE Optics + Photonics.

[32]  Antonin Miks,et al.  Analysis of two-element zoom systems based on variable power lenses. , 2010, Optics express.

[33]  Keiji Nagai,et al.  Thermal responsive microlens arrays , 2006 .

[34]  Joseph M. Geary,et al.  Introduction to Wavefront Sensors , 1995 .

[35]  M. Campbell,et al.  Presbyopia and the optical changes in the human crystalline lens with age , 1998, Vision Research.

[36]  W. Fang,et al.  Thermal Actuated Solid Tunable Lens , 2006, IEEE Photonics Technology Letters.

[37]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  James T Schwiegerling,et al.  Field guide to visual and ophthalmic optics , 2004 .

[39]  Fook Siong Chau,et al.  Liquid tunable diffractive/refractive hybrid lens. , 2009, Optics letters.

[40]  J. Straub Design, validation and application of an ocular Shack-Hartmann aberrometer , 2003 .

[41]  S A Burns,et al.  Age-related changes in monochromatic wave aberrations of the human eye. , 2001, Investigative ophthalmology & visual science.

[42]  Friedrich-Karl Bruder,et al.  New recording materials for the holographic industry , 2009, OPTO.

[43]  Shin-Tson Wu,et al.  Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals , 2003 .

[44]  M. R. Dodge,et al.  Adjustable hybrid diffractive/refractive achromatic lens , 2011, Optics express.

[45]  Yeshaiahu Fainman,et al.  Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. , 2005, Optics express.

[46]  Austin Roorda,et al.  A population study on changes in wave aberrations with accommodation. , 2004, Journal of vision.

[47]  M J Cox,et al.  Effect of aging on the monochromatic aberrations of the human eye. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  Amir Hirsa,et al.  Electrochemically activated adaptive liquid lens , 2005 .

[49]  Hiroshi Uozato,et al.  Changes of natural pupil size and ocular wavefront aberrations under the binocular and the monocular conditions , 2010 .

[50]  P Artal,et al.  Dynamics of the eye's wave aberration. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  G. Love,et al.  Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. , 1997, Applied Optics.

[52]  Qiong-Hua Wang,et al.  Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target , 2012 .

[53]  D. O'shea,et al.  Diffractive Optics: Design, Fabrication, and Test , 2003 .

[54]  Yi-Hsin Lin,et al.  An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens , 2011 .

[55]  J. Rühe,et al.  Swellable Surface‐Attached Polymer Microlenses with Tunable Focal Length , 2007 .

[56]  Sotiris Plainis,et al.  Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer , 2004, BMC ophthalmology.

[57]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[58]  Arturs Kalnins,et al.  Introduction to the Theory of Thin Shells , 1983 .

[59]  S. Burns,et al.  Monochromatic aberrations in the accommodated human eye , 2000, Vision Research.

[60]  Shin‐Tson Wu,et al.  Tunable-focus flat liquid crystal spherical lens , 2004 .

[61]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[62]  R. Navarro,et al.  Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Gholam A. Peyman,et al.  Adjustable fluidic lenses for ophthalmic corrections. , 2009, Optics letters.

[64]  H. C. King,et al.  Book Review: STARGAZER: THE LIFE AND TIMES OF THE TELESCOPE / Allen & Unwin, Crows Nest, NSW, 2004 , 2006 .

[65]  Susumu Sato,et al.  Electrically tunable lens based on a dual-frequency nematic liquid crystal. , 2006, Applied optics.

[66]  B. Howland,et al.  A subjective method for the measurement of monochromatic aberrations of the eye. , 1977, Journal of the Optical Society of America.

[67]  Yukitoshi Otani,et al.  Liquid Pressure Varifocus Lens , 2005 .