Monotony analysis and sparse-grid integration for nonlinear chance constrained process optimization

The numerical solution of a nonlinear chance constrained optimization problem poses a major challenge. The idea of back-mapping as introduced by M. Wendt, P. Li and G. Wozny in 2002 is a viable approach for transforming chance constraints on output variables (of unknown distribution) into chance constraints on uncertain input variables (of known distribution) based on a monotony relation. Once transformation of chance constraints has been accomplished, the resulting optimization problem can be solved by using a gradient-based algorithm. However, the computation of values and gradients of chance constraints and the objective function involves the evaluation of multi-dimensional integrals, which is computationally very expensive. This study proposes an easy-to-use method for analysing monotonic relations between constrained outputs and uncertain inputs. In addition, sparse-grid integration techniques are used to reduce the computational time decisively. Two examples from process optimization under uncertainty demonstrate the performance of the proposed approach.

[1]  W. Rheinboldt Local mapping relations and global implicit function theorems , 1969 .

[2]  I. Sandberg,et al.  Global implicit function theorems , 1981 .

[3]  Ignacio E. Grossmann,et al.  Design optimization of stochastic flexibility , 1993 .

[4]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[5]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[6]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[7]  K. Ritter,et al.  The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .

[8]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[9]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[10]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[11]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[12]  Ian Witten,et al.  Data Mining , 2000 .

[13]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[14]  Pu Li,et al.  Stochastic Optimization for Operating Chemical Processes under Uncertainty , 2001 .

[15]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[16]  M. Wendt,et al.  Nonlinear Chance-Constrained Process Optimization under Uncertainty , 2002 .

[17]  Günter Wozny,et al.  Optimal operation of distillation processes under uncertain inflows accumulated in a feed tank , 2002 .

[18]  Ioannis K. Kookos Optimal Operation of Batch Processes under Uncertainty: A Monte Carlo Simulation-Deterministic Optimization Approach , 2003 .

[19]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[20]  Rudolf Schürer,et al.  A comparison between (quasi-)Monte Carlo and cubature rule based methods for solving high-dimensional integration problems , 2003, Math. Comput. Simul..

[21]  R. Henrion,et al.  Optimization of a continuous distillation process under random inflow rate , 2003 .

[22]  E. Polak,et al.  Implementable Algorithm for Stochastic Optimization Using Sample Average Approximations , 2004 .

[23]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[24]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[25]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[26]  Harvey Arellano-Garcia,et al.  Chance Constrained Optimization of Process Systems under Uncertainty , 2006 .

[27]  Armen Der Kiureghian,et al.  Optimal design with probabilistic objective and constraints , 2006 .

[28]  Viktor Winschel,et al.  Estimation with Numerical Integration on Sparse Grids , 2006 .

[29]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[30]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .

[31]  Erich Novak,et al.  Cubature formulas for symmetric measures in higher dimensions with few points , 2007, Math. Comput..

[32]  Pu Li,et al.  Set-Point Optimization for Closed-Loop Control Systems under Uncertainty , 2007 .

[33]  Harvey Arellano-Garcia,et al.  Close-Loop Stochastic Dynamic Optimization Under Probabilistic Output-Constraints , 2007 .

[34]  Pu Li Prozessoptimierung unter Unsicherheiten , 2007 .

[35]  Frank Allgöwer,et al.  Assessment and Future Directions of Nonlinear Model Predictive Control , 2007 .

[36]  Wei Wang,et al.  Sample average approximation of expected value constrained stochastic programs , 2008, Oper. Res. Lett..

[37]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[38]  Sanjay Mehrotra,et al.  Epi-convergent scenario generation method for stochastic problems via sparse grid , 2008 .

[39]  Günter Wozny,et al.  Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity , 2009, Comput. Chem. Eng..

[40]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[41]  Alexander Shapiro,et al.  Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications , 2009, J. Optimization Theory and Applications.

[42]  G. Weber,et al.  REGULATORY NETWORKS UNDER ELLIPSOIDAL UNCERTAINTY - OPTIMIZATION THEORY AND DYNAMICAL SYSTEMS , 2009 .

[43]  G. Weber,et al.  RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set , 2011 .

[44]  Y. Z. Mehrjerdi A Chance Constrained Programming , 2012 .

[45]  Erik Kropat,et al.  Regulatory Networks under Ellipsoidal Uncertainty – Data Analysis and Prediction by Optimization Theory and Dynamical Systems , 2012 .

[46]  Yang Liu,et al.  Sample Average Approximation Method for Chance Constrained Stochastic Programming in Transportation Model of Emergency Management , 2012 .