Relative Igusa-Todorov Functions and Relative Homological Dimensions
暂无分享,去创建一个
[1] M. Lanzilotta,et al. The Igusa–Todorov function for comodules , 2017 .
[2] M. Lanzilotta,et al. Igusa-Todorov functions for Artin algebras , 2016, 1605.09766.
[3] M. Lanzilotta,et al. The ϕ-Dimension: A New Homological Measure , 2015 .
[4] Dengming Xu. Generalized Igusa–Todorov function and finitistic dimensions , 2013 .
[5] Changchang Xi,et al. THE FINITISTIC DIMENSION CONJECTURE AND RELATIVELY PROJECTIVE MODULES , 2013 .
[6] Octavio Mendoza Hernández,et al. Layer Lengths, Torsion Theories and the Finitistic Dimension , 2011, Appl. Categorical Struct..
[7] M. Lanzilotta,et al. Self-injective Right Artinian Rings and Igusa Todorov Functions , 2011, 1101.1936.
[8] Steffen Oppermann,et al. Representation dimension of artin algebras , 2010 .
[9] Overtoun M. G. Jenda,et al. Relative homological algebra , 1956 .
[10] Jiaqun Wei,et al. Finitistic dimension and Igusa-Todorov algebras , 2009 .
[11] Theo Buehler,et al. Exact Categories , 2008, 0811.1480.
[12] Lidia Angeleri Hugel,et al. Homological Dimensions in Cotorsion Pairs , 2008, 0808.1585.
[13] Changchang Xi. On the finitistic dimension conjecture, III: Related to the pair eAe⊆A , 2008 .
[14] M. Lanzilotta,et al. An approach to the finitistic dimension conjecture , 2007, 0710.2328.
[15] M. Lanzilotta,et al. Finitistic dimension through infinite projective dimension , 2007, 0709.4253.
[16] Idun Reiten,et al. Homological and Homotopical Aspects of Torsion Theories , 2007 .
[17] I. Reiten. Handbook of Tilting Theory: Tilting theory and homologically finite subcategories with applications to quasihereditary algebras , 2007 .
[18] Pu Zhang,et al. Algebras of Derived Dimension Zero , 2006, math/0608377.
[19] Octavio Mendoza,et al. Applications of stratifying systems to the finitistic dimension , 2006 .
[20] Changchang Xi. On the finitistic dimension conjecture II: Related to finite global dimension , 2006 .
[21] Julia Collins,et al. HOMOLOGICAL ALGEBRA , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.
[22] Changchang Xi. On the finitistic dimension conjecture I: related to representation-finite algebras , 2004 .
[23] Henrik Holm,et al. Gorenstein homological dimensions , 2004 .
[24] H. Holm,et al. Gorenstein derived functors , 2004 .
[25] O. Iyama. Finiteness of representation dimension , 2002 .
[26] Kiyoshi Igusa,et al. ON THE FINITISTIC GLOBAL DIMENSION CONJECTURE FOR ARTIN ALGEBRAS , 2002 .
[27] I. Ágoston,et al. Standardly Stratified Algebras and Tilting , 2000 .
[28] G. Rozas,et al. Covers and envelopes in the category of complexes of modules , 1999 .
[29] E. Cline,et al. Stratifying endomorphism algebras , 1996 .
[30] Overtoun M. G. Jenda,et al. Gorenstein injective and projective modules , 1995 .
[31] B. Z. Huisgen. The Finitistic Dimension Conjectures — A Tale of 3.5 Decades , 1995 .
[32] Yong Wang. A note on the finitistic dimension conjecture , 1994 .
[33] Ø. Solberg,et al. Relative homology and representation theory 1 , 1993 .
[34] Ø. Solberg,et al. Relative homology and representation theory II: Relative Cotilting theory , 1993 .
[35] B. Keller. Chain complexes and stable categories , 1990 .
[36] R. Buchweitz,et al. The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .
[37] Y. Miyashita. Tilting modules of finite projective dimension , 1986 .
[38] K. Nishida. On tilted algebras , 1983 .
[39] Auslander Maurice,et al. Representation Theory of Artin Algebras I , 1974 .
[40] M. Bridger,et al. Stable Module Theory , 1969 .
[41] Christian Peskine,et al. Anneaux de gorenstein, et torsion en algébre commutative , 1967 .
[42] H. Bass. Injective dimension in Noetherian rings , 1962 .
[43] M. Auslander. Relative homology and representation theory I. Relative homology and homologically finite subcategories , 2022 .