Projected sensitivity of DMRadio-m3 : A search for the QCD axion below

The QCD axion is one of the most compelling candidates to explain the dark matter abundance of the universe. With its extremely small mass ($\ll 1\,\mathrm{eV}/c^2$), axion dark matter interacts as a classical field rather than a particle. Its coupling to photons leads to a modification of Maxwell's equations that can be measured with extremely sensitive readout circuits. DMRadio-m$^3$ is a next-generation search for axion dark matter below $1\,\mu$eV using a $>4$ T static magnetic field, a coaxial inductive pickup, a tunable LC resonator, and a DC-SQUID readout. It is designed to search for QCD axion dark matter over the range $20\,\mathrm{neV}\lesssim m_ac^2\lesssim 800\,\mathrm{neV}$ ($5\,\mathrm{MHz}<\nu<200\,\mathrm{MHz}$). The primary science goal aims to achieve DFSZ sensitivity above $m_ac^2\approx 120$ neV (30 MHz), with a secondary science goal of probing KSVZ axions down to $m_ac^2\approx40\,\mathrm{neV}$ (10 MHz).

[1]  S. Chaudhuri Impedance matching to axion dark matter: considerations of the photon-electron interaction , 2021, Journal of Cosmology and Astroparticle Physics.

[2]  P. T. Surukuchi,et al.  Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE , 2021, Nature.

[3]  P. F. de Salas,et al.  Dark matter local density determination: recent observations and future prospects , 2020, Reports on progress in physics. Physical Society.

[4]  G. Hilton,et al.  A quantum enhanced search for dark matter axions , 2020, Nature.

[5]  A. Sushkov,et al.  Search for axion-like dark matter with ferromagnets , 2020, Nature Physics.

[6]  M. Giannotti,et al.  The landscape of QCD axion models , 2020, Physics Reports.

[7]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[8]  A. Ringwald,et al.  Axion properties in GUTs , 2018, Proceedings of Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2018).

[9]  C. Pagliarone,et al.  The CUORE cryostat: a 10 mK infrastructure for large bolometric arrays , 2017, 1904.05745.

[10]  Z. Fodor,et al.  Calculation of the axion mass based on high-temperature lattice quantum chromodynamics , 2016, Nature.

[11]  A. Ringwald,et al.  Standard Model—axion—seesaw—Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke , 2016, 1610.01639.

[12]  A. Ringwald Searching for axions and ALPs from string theory , 2012, 1209.2299.

[13]  G. Prodi,et al.  10ℏ superconducting quantum interference device amplifier for acoustic gravitational wave detectors , 2008 .

[14]  A. Clerk,et al.  Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.

[15]  John Clarke,et al.  Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 microT to 1.5 T. , 2007, Journal of magnetic resonance.

[16]  J. Conlon The QCD axion and moduli stabilisation , 2006, hep-th/0602233.

[17]  조남욱 전자/제조업의 Collaboration 전략 , 2003 .

[18]  E. Witten Some properties of O(32) superstrings , 1984 .

[19]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[20]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[21]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[22]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[23]  A. Hebecker,et al.  Axions in String Theory , 2022 .

[24]  Microwave Cavities and Detectors for Axion Research , 2020, Springer Proceedings in Physics.

[25]  W. Marsden I and J , 2012 .