Tensor MUSIC in multidimensional sparse arrays

Tensor-based MUSIC algorithms have been successfully applied to parameter estimation in array processing. In this paper, we apply these for sparse arrays, such as nested arrays and coprime arrays, which are known to boost the degrees of freedom to O(N2) given O(N) sensors. We consider two tensor decomposition methods: CANDECOMP/PARAFAC (CP) and high-order singular value decomposition (HOSVD) to derive novel tensor MUSIC spectra for sparse arrays. It will be demonstrated that the tensor MUSIC spectrum via HOSVD suffers from cross-term issues while the tensor MUSIC spectrum via CP identifies sources unambiguously, even in high- dimensional tensors.

[1]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[2]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[3]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[4]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[5]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[6]  Philippe Forster,et al.  Numerical performance of a tensor MUSIC algorithm based on HOSVD for a mixture of polarized sources , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[7]  P. P. Vaidyanathan,et al.  Coprime arrays and samplers for space-time adaptive processing , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  P. Vaidyanathan,et al.  Coprime sampling and the music algorithm , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[9]  A. Moffet Minimum-redundancy linear arrays , 1968 .

[10]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[11]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.

[12]  P. P. Vaidyanathan,et al.  Remarks on the Spatial Smoothing Step in Coarray MUSIC , 2015, IEEE Signal Processing Letters.

[13]  Y. Bar-Ness,et al.  A new approach to array geometry for improved spatial spectrum estimation , 1985, Proceedings of the IEEE.

[14]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[15]  Nicolas Le Bihan,et al.  Vector-Sensor MUSIC for Polarized Seismic Sources Localization , 2005, EURASIP J. Adv. Signal Process..

[16]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[17]  P. P. Vaidyanathan,et al.  Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom , 2010, IEEE Transactions on Signal Processing.

[18]  Arye Nehorai,et al.  Nested Vector-Sensor Array Processing via Tensor Modeling , 2014, IEEE Transactions on Signal Processing.

[19]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[20]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..