Modeling bistability and switching in a [2]catenane

Bistable catenanes have the potential to serve as molecular-scale switches and machines. We have chosen to study an electrochemically-switchable [2]catenane consisting of a tetracationic cyclophane and a cyclic polyether [C. P. Collier et al., Science, 2000, 289, 1172–1175]. The application of semiempirical electronic structure calculations for a large ensemble of chemically reasonable configurations of the catenane provides a structure–energy profile consistent with experimental results. The calculations not only confirm the state-dependent structural preferences previously inferred experimentally, but also give insight into the fundamental basis of the switching mechanism and resolve earlier ambiguities concerning the connectivity of the tetrathiafulvalene unit in the polyether ring.

[1]  J. F. Stoddart,et al.  Template-directed syntheses of catenanes , 1997 .

[2]  N. L. Allinger,et al.  An extended MM3(96) force field for complexes of the group 1A and 2A cations with ligands bearing conjugated ether donor groups , 1998 .

[3]  Claudine Katan First-Principles Study of the Structures and Vibrational Frequencies for Tetrathiafulvalene TTF and TTF-d4 in Different Oxidation States , 1999 .

[4]  Q. Guo,et al.  PM3 studies on the complexation of α-cyclodextrin with benzaldehyde and acetophenone , 2000 .

[5]  C. Schalley,et al.  On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. , 2001, Accounts of chemical research.

[6]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[7]  W. Goddard,et al.  Structures and Energetics Study of Tetrathiafulvalene-Based Donors of Organic Superconductors , 1997 .

[8]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[9]  J. Rustad,et al.  Conformational analysis of crown ethers. Part 1. 12-Crown-4 , 1995 .

[10]  Jay W. Ponder,et al.  Algorithms for calculating excluded volume and its derivatives as a function of molecular conformation and their use in energy minimization , 1991 .

[11]  J. Fraser Stoddart,et al.  Origins of Selectivity in Molecular and Supramolecular Entities: Solvent and Electrostatic Control of the Translational Isomerism in [2]Catenanes† , 1998 .

[12]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[13]  Bobby G. Sumpter,et al.  Semi-empirical study of a prototype rotaxane-based molecular shuttle , 1999 .

[14]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[15]  Francesco Zerbetto,et al.  Controlling the Frequency of Macrocyclic Ring Rotation in Benzylic Amide [2]Catenanes , 1998 .

[16]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[17]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[18]  Fritz Vögtle,et al.  A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .

[19]  J. Rustad,et al.  Structural Criteria for the Rational Design of Selective Ligands:Extension of the MM3 Force Field to Aliphatic Ether Complexes of the Alkali and Alkaline Earth Cations , 1994 .

[20]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[21]  Liliana Y. A. Dávila,et al.  Applicability of MNDO techniques AM1 and PM3 to ring‐structured polymers , 2002, J. Comput. Chem..

[22]  Giovanni Scalmani,et al.  Theoretical Study of a New Building Block for Organic Conductors: Tetrathiapentalene and Its Radical Cation , 1999 .

[23]  P. Rudolf,et al.  Effect of potassium intercalation on the electronic and vibrational properties of benzylic amide [2]catenane films , 2002 .

[24]  E. Wasserman,et al.  An extended molecular mechanics (MM3(96)) force field for benzocrown ethers, calixarenes, and spherands , 1997 .

[25]  R. Schmieder,et al.  From rotaxanes to knots. Templating, hydrogen bond patterns, and cyclochirality , 2000 .

[26]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[27]  J. Fraser Stoddart,et al.  π–π INTERACTIONS IN SELF‐ASSEMBLY , 1997 .

[28]  Francesco Zerbetto,et al.  How do benzylic amide [2]catenane rings rotate? , 1999 .

[29]  Jay W. Ponder,et al.  Accurate modeling of the intramolecular electrostatic energy of proteins , 1995, J. Comput. Chem..

[30]  R. Zamboni,et al.  High-Frequency Vibrations of the Simplest Benzylic Amide [2]Catenane , 1998 .

[31]  A. Raudino,et al.  Hydrogen bonding and rotation barriers: A comparison between MNDO and AM1 results , 1988 .

[32]  Norman L. Allinger,et al.  Van der Waals effects between hydrogen and first‐row atoms in molecular mechanics (MM3/MM4) , 2000 .