Technical-economic evaluation of severe plastic deformation processing technologies—methodology and use case of lever-arm-shaped aircraft lightweight components

This paper presents an innovative methodology for integrated technical-economic evaluations of extrusion technologies and aims to show potentials of severe plastic deformation (SPD) technologies. Extrusion technologies and processes such as SPD have a strong influence on properties of aluminium-based lightweight materials. Hence, research and development regarding such processes may contribute to gain competitive advantages for companies as they can differentiate from competitors by offering or processing materials with distinctive properties (e.g. light weight and high yield strength) causing customer’s benefit. Consequently, it is of great importance for companies of the aluminium extrusion industry to select technologies that are promising from both a technical and an economic point of view. Using the integrated methodology, selected SPD technologies are analysed. The application to the use case of lever-arm-shaped aircraft components shows that these technologies bear technical as well as considerable economic potentials: extrusion at room temperature can increase yield strength by 25% compared to commercial extrusion at a similar level of manufacturing costs and the monetary appraisal of the benefits of lower weight for the users of aircraft components indicates a significant economic potential of extrusion at room temperature.

[1]  P. Nyhuis,et al.  Erweiterte Prozesskettenbewertung am Beispiel eines kombinierten Laserverfahrens , 2009 .

[2]  M. Hockauf,et al.  Corrosion Characteristics of an Ultrafine-Grained Al-Mg-Si Alloy (AA6082) , 2008 .

[3]  Brian Elmegaard,et al.  Technical and economic working domains of industrial heat pumps: Part 1 – Single stage vapour compression heat pumps ☆ , 2015 .

[4]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[5]  Ryo Akasaka,et al.  A fundamental equation of state for cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) , 2014 .

[6]  Leo Alting,et al.  Life cycle engineering and design , 1995 .

[7]  Chen Ying,et al.  Technical and Economic Evaluation for Wire-line Coring in Large Diameter Deep Drilling Project in Salt Basin☆ , 2014 .

[8]  T. Lampke,et al.  Anodic oxidation of AlMgSi1 — Coatings' mechanical properties, process costs and energy consumption of the oxide formation , 2016 .

[9]  Uwe Götze,et al.  Vorgehensmodell zur Abbildung und Analyse des Lebenszykluserfolges von Werkstoffen – Konzeption und beispielhafte Veranschaulichung. Modeling approach for the life cycle profit of materials – conceptual design and case study , 2010 .

[10]  Peter Schuster,et al.  Investment Appraisal: Methods and Models , 2007 .

[11]  T. Lampke,et al.  Erfassung von Effekten beim Skalieren von ECAP am Beispiel einer 6000er Aluminiumlegierung , 2010 .

[12]  Uwe Götze,et al.  Integrated Framework for Life Cycle-Oriented Evaluation of Product and Process Technologies: Conceptual Design and Case Study , 2014 .

[13]  L. Krüger,et al.  Simultaneous improvement of strength and ductility of Al–Mg–Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging , 2009 .

[14]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[15]  Birgit Awiszus,et al.  Multidimensional Analysis of Process Chains Regarding the Resource-efficient Manufacturing of Hybrid Structures , 2015 .

[16]  Robert Schmitt,et al.  Life Cycle Engineering in Preliminary Aircraft Design , 2012 .

[17]  Robert S. Kaplan,et al.  Advanced Management Accounting , 1989 .

[18]  M. Hockauf,et al.  The role of backpressure during large scale Equal‐Channel Angular Pressing , 2012 .

[19]  T. Harms,et al.  Technical and economic evaluation of the utilization of solar energy at South Africa's SANAE IV base in Antarctica , 2005 .

[20]  Santo Marcello Zimbone,et al.  A simple method to evaluate the technical and economic feasibility of micro hydro power plants in existing irrigation systems , 2016 .

[21]  Fernando López,et al.  Technical and economic evaluation of fluorescent and LED luminaires in underground mining. A case study: New mine level of El Teniente , 2015 .

[22]  Elsa Henriques,et al.  Application of Life Cycle Engineering Approach to Assess the Pertinence of Using Natural Fibers in Composites – The Rocker Case Study , 2016 .

[23]  M. Hackert-Oschätzchen,et al.  Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining , 2016 .

[24]  Brian Elmegaard,et al.  Technical and economic working domains of industrial heat pumps: Part 2 – Ammonia-water hybrid absorption-compression heat pumps☆ , 2015 .

[25]  U. Lindemann,et al.  Cost-Efficient Design , 2007 .

[26]  J. Paetzold,et al.  Integrated methodology for the evaluation of the energy- and cost-effectiveness of machine tools , 2012 .

[27]  A. Deschamps,et al.  Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy , 2014 .

[28]  Uwe Götze,et al.  Methodik zur kostenorientierten Bewertung von Prozessketten der Werkstoffverarbeitung , 2011 .

[29]  L. W. Meyer,et al.  Untersuchungen zum Einfluss von ECAP und Tieftemperaturwalzen auf die mechanischen Eigenschaften der Aluminiumlegierung 7075 , 2010 .

[30]  R. Chiumeo,et al.  Technical–economic sustainability of premium power parks , 2015 .

[31]  T. Mehner,et al.  Effect of Strain Localization on Pitting Corrosion of an AlMgSi0.5 Alloy , 2015 .

[32]  Robert S. Kaplan,et al.  Time-Driven Activity-Based Costing: A Simpler and More Powerful Path to Higher Profits , 2007 .

[33]  R. Valiev,et al.  Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development , 2013 .

[34]  Elsa Henriques,et al.  A Life Cycle Engineering model for technology selection: a case study on plastic injection moulds for low production volumes , 2009 .

[35]  Y. Estrin,et al.  Extreme grain refinement by severe plastic deformation: A wealth of challenging science , 2013 .

[36]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[37]  John N. Saddler,et al.  An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process , 1991 .

[38]  Elsa Henriques,et al.  Life Cycle Engineering for Materials and Technology Selection: Two Models, One Approach☆ , 2014 .

[39]  Udo Lambrecht,et al.  Energieeffizienz im Verkehr , 2010 .

[40]  Umberto Arena,et al.  A techno-economic evaluation of a small-scale fluidized bed gasifier for solid recovered fuel , 2015 .

[41]  T. Lampke,et al.  An experimental study on optimum lubrication for large-scale severe plastic deformation of aluminum-based alloys , 2017 .

[42]  T. Halle,et al.  Rissfortschritts‐ und Ermüdungsverhalten der Aluminiumlegierung EN AW‐6060 nach ECAP und nachgelagerter Wärmebehandlung , 2009 .

[43]  Y. Estrin,et al.  Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing , 2011 .

[44]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[45]  L. Meyer,et al.  Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment , 2010 .

[46]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[47]  M. Hockauf,et al.  Scaling up Segal's principle of Equal-Channel Angular Pressing , 2016 .