Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations

In this paper, a three-dimensional adaptive finite element method is developed for a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed finite element formulation, residual type a posteriori error estimates are derived for the associated nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening. The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of vesicle membranes and enhances its capability in handling complex shape and topological changes. The effectiveness of the adaptive method is further demonstrated through numerical examples.

[1]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[2]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[3]  Liyong Zhu,et al.  ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR A PHASE FIELD BENDING ELASTICITY MODEL OF VESICLE , 2006 .

[4]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[5]  Q. Du,et al.  Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .

[6]  Slimane Adjerid,et al.  A posteriori error estimates for fourth-order elliptic problems , 2002 .

[7]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[8]  Qiang Du,et al.  Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .

[9]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[10]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[11]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[12]  Seifert,et al.  Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Qiang Du,et al.  Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..

[14]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[15]  Göran Lindblom,et al.  ‘Life – as a matter of fat’ : The emerging science of lipidomics , 2005 .

[16]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  Zi-Kui Liu,et al.  Spectral implementation of an adaptive moving mesh method for phase-field equations , 2006, J. Comput. Phys..

[19]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[20]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .

[21]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[22]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[23]  M I Bloor,et al.  Method for efficient shape parametrization of fluid membranes and vesicles. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Qiang Du,et al.  Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations , 2006 .

[25]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[26]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[27]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[28]  J. Mackenzie,et al.  A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .

[29]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[30]  Ricardo H. Nochetto,et al.  A P 1 -- P 1 Finite Element Method for a Phase Relaxation Model I: Quasi-Uniform Mesh , 1998 .

[31]  Qiang Du,et al.  DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗ , 2007 .

[32]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[33]  Philippe G. Ciarlet,et al.  Introduction to Linear Shell Theory , 1989 .

[34]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[35]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[36]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[37]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[38]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[39]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[40]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[41]  U. Seifert,et al.  Influence of shear flow on vesicles near a wall: A numerical study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Ricardo H. Nochetto,et al.  Error Control and Andaptivity for a Phase Relaxation Model , 2000 .

[43]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[44]  Carsten Carstensen,et al.  Numerical Analysis for a Macroscopic Model in Micromagnetics , 2004, SIAM J. Numer. Anal..

[45]  C. Pozrikidis,et al.  Effect of membrane bending stiffness on the deformation of capsules in simple shear flow , 2001, Journal of Fluid Mechanics.

[46]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[47]  Qiang Du,et al.  Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity , 1994 .

[48]  U. Seifert,et al.  Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory , 1996, cond-mat/9612151.

[49]  Ou-Yang Zhong-can,et al.  Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .

[50]  Maurizio Paolini,et al.  Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter , 1992 .

[51]  Xiaoqiang Wang,et al.  Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..