Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations
暂无分享,去创建一个
Jian Zhang | Qiang Du | Q. Du | Jian Zhang
[1] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[2] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[3] Liyong Zhu,et al. ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR A PHASE FIELD BENDING ELASTICITY MODEL OF VESICLE , 2006 .
[4] Q. Du,et al. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.
[5] Q. Du,et al. Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .
[6] Slimane Adjerid,et al. A posteriori error estimates for fourth-order elliptic problems , 2002 .
[7] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[8] Qiang Du,et al. Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .
[9] Feng Feng,et al. Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..
[10] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[11] Andreas Prohl,et al. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..
[12] Seifert,et al. Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[13] Qiang Du,et al. Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..
[14] Andreas Veeser,et al. Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..
[15] Göran Lindblom,et al. ‘Life – as a matter of fat’ : The emerging science of lipidomics , 2005 .
[16] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[17] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[18] Zi-Kui Liu,et al. Spectral implementation of an adaptive moving mesh method for phase-field equations , 2006, J. Comput. Phys..
[19] J. Lowengrub,et al. Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .
[20] Qiang Du,et al. Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .
[21] Qiang Du,et al. A phase field formulation of the Willmore problem , 2005 .
[22] Sergey I. Repin,et al. A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..
[23] M I Bloor,et al. Method for efficient shape parametrization of fluid membranes and vesicles. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[24] Qiang Du,et al. Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations , 2006 .
[25] Randall J. LeVeque,et al. Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..
[26] Department of Physics,et al. EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .
[27] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[28] J. Mackenzie,et al. A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .
[29] Reinhard Lipowsky,et al. The conformation of membranes , 1991, Nature.
[30] Ricardo H. Nochetto,et al. A P 1 -- P 1 Finite Element Method for a Phase Relaxation Model I: Quasi-Uniform Mesh , 1998 .
[31] Qiang Du,et al. DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗ , 2007 .
[32] M. Berger,et al. An Adaptive Version of the Immersed Boundary Method , 1999 .
[33] Philippe G. Ciarlet,et al. Introduction to Linear Shell Theory , 1989 .
[34] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[35] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[36] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[37] Qiang Du,et al. ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .
[38] Qiang Du,et al. Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..
[39] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[40] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[41] U. Seifert,et al. Influence of shear flow on vesicles near a wall: A numerical study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[42] Ricardo H. Nochetto,et al. Error Control and Andaptivity for a Phase Relaxation Model , 2000 .
[43] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[44] Carsten Carstensen,et al. Numerical Analysis for a Macroscopic Model in Micromagnetics , 2004, SIAM J. Numer. Anal..
[45] C. Pozrikidis,et al. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow , 2001, Journal of Fluid Mechanics.
[46] I. Babuska,et al. The finite element method and its reliability , 2001 .
[47] Qiang Du,et al. Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity , 1994 .
[48] U. Seifert,et al. Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory , 1996, cond-mat/9612151.
[49] Ou-Yang Zhong-can,et al. Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .
[50] Maurizio Paolini,et al. Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter , 1992 .
[51] Xiaoqiang Wang,et al. Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..