Thomassen's Choosability Argument Revisited

Thomassen (J. Combin. Theory Ser. B, 62 (1994), pp. 180-181) proved that every planar graph is 5-choosable. This result was generalized by Skrekovski (Discrete Math., 190 (1998), pp. 223-226) and He, Miao, and Shen (Discrete Math., 308 (2008), pp. 4024-4026), who proved that every $K_5$-minor-free graph is 5-choosable. Both proofs rely on the characterization of $K_5$-minor-free graphs due to Wagner (Math. Ann., 114 (1937), pp. 570-590). This paper proves the same result without using Wagner's structure theorem or even planar embeddings. Given that there is no structure theorem for graphs with no $K_6$-minor, we argue that this proof suggests a possible approach for attacking the Hadwiger Conjecture.

[1]  David R. Wood Contractibility and the Hadwiger Conjecture , 2010, Eur. J. Comb..

[2]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[3]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[4]  Yufa Shen,et al.  Another proof of the 5-choosability of K5-minor-free graphs , 2008, Discret. Math..

[5]  Paul Wollan Extremal functions for rooted minors , 2008, J. Graph Theory.

[6]  Ken-ichi Kawarabayashi,et al.  Extremal results for rooted minor problems , 2007, J. Graph Theory.

[7]  Carsten Thomassen,et al.  Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.

[8]  Margit Voigt,et al.  List colourings of planar graphs , 2006, Discret. Math..

[9]  Riste Skrekovski,et al.  Choosability of K5-minor-free graphs , 1998, Discret. Math..

[10]  Ken-ichi Kawarabayashi,et al.  A relaxed Hadwiger's Conjecture for list colorings , 2007, J. Comb. Theory, Ser. B.

[11]  Ken-ichi Kawarabayashi,et al.  Rooted minor problems in highly connected graphs , 2004, Discret. Math..

[12]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Béla Bollobás,et al.  List-colourings of graphs , 1985, Graphs Comb..

[14]  Wolfgang Mader,et al.  Generalizations of critical connectivity of graphs , 1988, Discret. Math..

[15]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[16]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .