A Shuffle Theorem for Paths Under Any Line
暂无分享,去创建一个
Jennifer Morse | Jonah Blasiak | Mark Haiman | Anna Y. Pun | Anna Pun | George H. Seelinger | J. Blasiak | M. Haiman | J. Morse
[1] B. Feigin,et al. Equivariant K-theory of Hilbert schemes via shuffle algebra , 2009, 0904.1679.
[2] A. Garsia,et al. A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .
[3] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[4] C. Peirce. An unpublished manuscript) , 2016 .
[5] Jennifer Morse,et al. A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path , 2010, Canadian Journal of Mathematics.
[6] J. B. Remmel,et al. A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.
[7] q-Hypergeometric Series and Macdonald Functions , 1994 .
[8] Graham Hawkes,et al. Generalized $q,t$-Catalan numbers , 2019, 1905.10973.
[9] Erik Carlsson,et al. A proof of the shuffle conjecture , 2015, 1508.06239.
[10] t-KOSTKA COEFFICIENTS.,et al. Some Natural Bigraded S_n-Modules and q,t-Kostka Coefficients. , 1996 .
[11] A. Lascoux. Double Crystal Graphs , 2003 .
[12] O. Schiffmann,et al. On the Hall algebra of an elliptic curve, I , 2005, math/0505148.
[13] Alain Lascoux,et al. Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .
[14] Arun Ram,et al. A combinatorial formula for Macdonald polynomials , 2008, 0803.1146.
[15] Guoce Xin,et al. Compositional (km,kn)-Shuffle Conjectures , 2014, 1404.4616.
[16] A. Neguț. The Shuffle Algebra Revisited , 2012, 1209.3349.
[17] Mark Haiman,et al. Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .
[18] Tatsuyuki Hikita,et al. Affine Springer fibers of type A and combinatorics of diagonal coinvariants , 2012, 1203.5878.
[19] Mark Haiman,et al. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.
[20] Anton Mellit. Toric braids and (m,n)-parking functions , 2021, Duke Mathematical Journal.
[21] Alain Lascoux,et al. Non-symmetric Cauchy kernels for the classical groups , 2009, J. Comb. Theory, Ser. A.
[22] George Lusztig,et al. Affine Hecke algebras and their graded version , 1989 .
[23] P. Alexandersson. Non-symmetric Macdonald polynomials and Demazure-Lusztig operators , 2016, 1602.05153.
[24] K. Mimachi,et al. A reproducing kernel for nonsymmetric Macdonald polynomials , 1996, q-alg/9610014.
[25] François Bergeron,et al. Identities and Positivity Conjectures for some remarkable Operators in the Theory of Symmetric Functions , 1999 .
[26] Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials , 2004, math/0406060.
[27] Adriano M. Garsia,et al. Explicit Plethystic Formulas for Macdonald q,t-Kostka Coefficients , 2001 .
[28] M. Haiman,et al. AFFINE HECKE ALGEBRAS AND POSITIVITY OF LLT AND MACDONALD POLYNOMIALS , 2007 .