A Shuffle Theorem for Paths Under Any Line

We generalize the shuffle theorem and its (km, kn) version, as conjectured by Haglund et al. and Bergeron et al., and proven by Carlsson and Mellit, and Mellit, respectively. In our version the (km, kn) Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of GLl characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for non-symmetric HallLittlewood polynomials.

[1]  B. Feigin,et al.  Equivariant K-theory of Hilbert schemes via shuffle algebra , 2009, 0904.1679.

[2]  A. Garsia,et al.  A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .

[3]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[4]  C. Peirce An unpublished manuscript) , 2016 .

[5]  Jennifer Morse,et al.  A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path , 2010, Canadian Journal of Mathematics.

[6]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[7]  q-Hypergeometric Series and Macdonald Functions , 1994 .

[8]  Graham Hawkes,et al.  Generalized $q,t$-Catalan numbers , 2019, 1905.10973.

[9]  Erik Carlsson,et al.  A proof of the shuffle conjecture , 2015, 1508.06239.

[10]  t-KOSTKA COEFFICIENTS.,et al.  Some Natural Bigraded S_n-Modules and q,t-Kostka Coefficients. , 1996 .

[11]  A. Lascoux Double Crystal Graphs , 2003 .

[12]  O. Schiffmann,et al.  On the Hall algebra of an elliptic curve, I , 2005, math/0505148.

[13]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[14]  Arun Ram,et al.  A combinatorial formula for Macdonald polynomials , 2008, 0803.1146.

[15]  Guoce Xin,et al.  Compositional (km,kn)-Shuffle Conjectures , 2014, 1404.4616.

[16]  A. Neguț The Shuffle Algebra Revisited , 2012, 1209.3349.

[17]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .

[18]  Tatsuyuki Hikita,et al.  Affine Springer fibers of type A and combinatorics of diagonal coinvariants , 2012, 1203.5878.

[19]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[20]  Anton Mellit Toric braids and (m,n)-parking functions , 2021, Duke Mathematical Journal.

[21]  Alain Lascoux,et al.  Non-symmetric Cauchy kernels for the classical groups , 2009, J. Comb. Theory, Ser. A.

[22]  George Lusztig,et al.  Affine Hecke algebras and their graded version , 1989 .

[23]  P. Alexandersson Non-symmetric Macdonald polynomials and Demazure-Lusztig operators , 2016, 1602.05153.

[24]  K. Mimachi,et al.  A reproducing kernel for nonsymmetric Macdonald polynomials , 1996, q-alg/9610014.

[25]  François Bergeron,et al.  Identities and Positivity Conjectures for some remarkable Operators in the Theory of Symmetric Functions , 1999 .

[26]  Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials , 2004, math/0406060.

[27]  Adriano M. Garsia,et al.  Explicit Plethystic Formulas for Macdonald q,t-Kostka Coefficients , 2001 .

[28]  M. Haiman,et al.  AFFINE HECKE ALGEBRAS AND POSITIVITY OF LLT AND MACDONALD POLYNOMIALS , 2007 .