A multiscale strength model for extreme loading conditions

We present a multiscale strength model in which strength depends on pressure, strain rate, temperature, and evolving dislocation density. Model construction employs an information passing paradigm to span from the atomistic level to the continuum level. Simulation methods in the overall hierarchy include density functional theory, molecular statics, molecular dynamics, dislocation dynamics, and continuum based approaches. Given the nature of the subcontinuum simulations upon which the strength model is based, the model is particularly appropriate to strain rates in excess of 104 s−1. Strength model parameters are obtained entirely from the hierarchy of simulation methods to obtain a full strength model in a range of loading conditions that so far has been inaccessible to direct measurement of material strength. Model predictions compare favorably with relevant high energy density physics (HEDP) experiments that have bearing on material strength. The model is used to provide insight into HEDP experimental ...

[1]  D. Lassila,et al.  Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys , 2000 .

[2]  S. Nemat-Nasser,et al.  Comparison between high and low strain-rate deformation of tantalum , 2000 .

[3]  Ronald W. Armstrong,et al.  Description of tantalum deformation behavior by dislocation mechanics based constitutive relations , 1990 .

[4]  Kenneth A. Meyer,et al.  Taylor instability in solids , 1974 .

[5]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[6]  L. Murr,et al.  Shock-induced deformation twinning in tantalum , 1997 .

[7]  J. Moriarty,et al.  Atomistic simulation of pressure-dependent screw dislocation properties in bcc tantalum , 2001 .

[8]  G. T. Gray,et al.  Influence of peak pressure and temperature on the structure/property response of shock- loaded Ta and Ta-10W , 1995 .

[9]  M A Meyers,et al.  Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales. , 2001, Physical review letters.

[10]  Jaroslaw Knap,et al.  A call to arms for task parallelism in multi‐scale materials modeling , 2011 .

[11]  Dean L. Preston,et al.  Model of plastic deformation for extreme loading conditions , 2003 .

[12]  Mohsen Shahinpoor,et al.  High-Pressure Shock Compression of Solids III , 2011 .

[13]  Stephen B. Pope,et al.  An improved algorithm for in situ adaptive tabulation , 2009, J. Comput. Phys..

[14]  R. Becker,et al.  Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures , 2010 .

[15]  Alan F. Jankowski,et al.  Accessing ultrahigh-pressure, quasi-isentropic states of matter , 2004 .

[16]  Richard D. Hornung,et al.  Adaptive sampling in hierarchical simulation , 2007 .

[17]  Lallit Anand,et al.  Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum , 1998 .

[18]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[19]  R. Armstrong,et al.  Dislocation Mechanics of Shock-Induced Plasticity , 2007 .

[20]  N. Bourne,et al.  On the shock response of cubic metals , 2009 .

[21]  Hyunho Shin,et al.  Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature , 2009 .

[22]  T. A. Mason,et al.  Influence of shockwave obliquity on deformation twin formation in Ta , 2009 .

[23]  Jaime Marian,et al.  Dynamic transitions from smooth to rough to twinning in dislocation motion , 2004, Nature materials.

[24]  W. Spitzig,et al.  Three-stage hardening in tantalum single crystals. , 1965 .

[25]  Lin H. Yang,et al.  Chapter 92 Dislocations and Plasticity in bcc Transition Metals at High Pressure , 2009 .

[26]  K. G. Hoge,et al.  The temperature and strain rate dependence of the flow stress of tantalum , 1977 .

[27]  J. H. Bechtold Tensile properties of annealed tantalum at low temperatures , 1955 .

[28]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[29]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[30]  Hussein M. Zbib,et al.  A multiscale model of plasticity , 2002 .

[31]  Ronald W. Armstrong,et al.  Dislocation mechanics of copper and iron in high rate deformation tests , 2009 .

[32]  Mark F. Horstemeyer,et al.  Multiscale modeling of the plasticity in an aluminum single crystal , 2009 .

[33]  S. Nemat-Nasser,et al.  Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys , 1997 .

[34]  Nathan R. Barton,et al.  BRINGING TOGETHER COMPUTATIONAL AND EXPERIMENTAL CAPABILITIES AT THE CRYSTAL SCALE , 2009 .

[35]  M. Meyers,et al.  Spontaneous and forced shear localization in high-strain-rate deformation of tantalum , 1999 .

[36]  Laszlo S. Toth,et al.  A dislocation-based model for all hardening stages in large strain deformation , 1998 .

[37]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[38]  N. Barton,et al.  Defect evolution and pore collapse in crystalline energetic materials , 2009 .

[39]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[40]  P. Dawson,et al.  A two-scale deformation model for polycrystalline solids using a strongly-coupled finite element methodology , 2007 .

[41]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[42]  M. Meyers,et al.  Material dynamics under extreme conditions of pressure and strain rate , 2005 .

[43]  Alfredo Caro,et al.  Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations , 2006 .

[44]  C. M. Lund,et al.  A constitutive model for strain rates from 10−4 to 106 s−1 , 1989 .

[45]  Richard D. Hornung,et al.  Embedded polycrystal plasticity and adaptive sampling , 2008 .

[46]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[47]  R. Becker,et al.  The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys , 2002 .

[48]  R. Rudd,et al.  Multiphase improved Steinberg–Guinan model for vanadium , 2008 .

[49]  D. Kalantar,et al.  Analysis of the x-ray diffraction signal for the {alpha}-{epsilon} transition in shock-compressed iron: Simulation and experiment , 2006 .

[50]  M. Meyers Dynamic Behavior of Materials , 1994 .

[51]  E. Cerreta,et al.  Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions , 2007 .

[52]  R. Becker,et al.  Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate. , 2010, Physical review letters.

[53]  Per Söderlind,et al.  Accurate atomistic simulation of (a/2) ⟨111⟩ screw dislocations and other defects in bcc tantalum , 2001 .

[54]  J. N. Johnson Micromechanical Considerations in Shock Compression of Solids , 1993 .