Global importance of large‐diameter trees

Aim: To examine the contribution of large-diameter trees to biomass, stand structure, and species richness across forest biomes. Location: Global. Time period: Early 21st century. Major taxa studied: Woody plants. Methods: We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees >= 1 cm diameter at breast height (DBH), all trees >= 60 cm DBH, and those rank-ordered largest trees that cumulatively comprise 50% of forest biomass. Results: Averaged across these 48 forest plots, the largest 1% of trees >= 1 cm DBH comprised 50% of aboveground live biomass, with hectare-scale standard deviation of 26%. Trees >= 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r(2) 5.62, p < .001). Large-diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r(2) = 5.45, p < .001). Forests with more diverse large-diameter tree communities were comprised of smaller trees (r(2) = 5.33, p < .001). Lower large-diameter richness was associated with large-diameter trees being individuals of more common species (r(2) =5.17, p=5.002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r(2) = 5.46, p < .001), as did forest density (r(2) = 5.31, p < .001). Forest structural complexity increased with increasing absolute latitude (r(2) = 5.26, p < .001). Main conclusions: Because large-diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large-diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.

David Kenfack | Min Cao | Xiangcheng Mi | Keping Ma | Stephen P. Hubbell | Sean M. McMahon | William J. McShea | Yadvinder Malhi | Alfonso Alonso | David F. R. P. Burslem | Glen Reynolds | Richard P. Phillips | Christian P. Giardina | Stuart J. Davies | Lisa Korte | Hervé R. Memiaghe | Gregory S. Gilbert | Robert W. Howe | Andrew J. Larson | Vojtech Novotny | Geoffrey G. Parker | David A. Orwig | Richard Condit | Andy Hector | Kamil Král | David Janík | Tomáš Vrška | Sarayudh Bunyavejchewin | Jennifer L. Baltzer | Akira Itoh | Wei-Chun Chao | María Uriarte | Kuo-Jung Chao | Kristina J. Anderson-Teixeira | Lawren Sack | James A. Lutz | Norman A. Bourg | Li-Wan Chang | Amy T. Wolf | Jean-Remy Makana | Renato Valencia | C. Alina Cansler | Sandra Yap | Fangliang He | Chengjin Chu | Xugao Wang | Yue-Hua Hu | Chang-Fu Hsieh | Jess K. Zimmerman | Jill Thompson | I-Fang Sun | J. Zimmerman | S. Hubbell | YiChing Lin | M. Uriarte | Jill Thompson | G. Parker | D. Burslem | Y. Malhi | Á. Duque | R. Condit | C. A. Cansler | R. Sukumar | Shirong Liu | F. He | L. Sack | S. McMahon | K. Chao | A. Hector | W. McShea | J. Lutz | Xugao Wang | Zhanqing Hao | S. Davies | I. Sun | R. Howe | Richard P Phillips | C. Ewango | T. Hart | J. Makana | V. Novotný | G. Weiblen | A. Larson | X. Mi | K. Ma | T. Yamakura | D. Orwig | Daniel J. Johnson | A. Kassim | K. Anderson‐Teixeira | T. Vrška | Kamil Král | C. Giardina | G. Gilbert | S. Cordell | M. Swanson | D. Kenfack | A. Alonso | A. Oliveira | M. Morecroft | J. Baltzer | R. Valencia | Kendall M. L. Becker | Han Xu | Yide Li | M. Cao | Duncan W. Thomas | S. Bunyavejchewin | H. Dattaraja | A. Itoh | G. Reynolds | A. Wolf | C. Fletcher | A. Vicentini | Sylvester Tan | R. Ostertag | G. Chuyong | K. Clay | P. Musili | H. Suresh | Dairon Cárdenas | G. Fischer | B. Hau | Faith M Inman-Narahari | L. Korte | S. Lum | H. Memiaghe | J. Myers | P. Ong | S. Yap | S. Su | C. Hsieh | Chengjin Chu | Susan Cordell | Terese B. Hart | Abdul Rahman Kassim | Raman Sukumar | Sylvester Tan | Takuo Yamakura | H. S. Dattaraja | Michael D. Morecroft | Dairon Cárdenas | Tucker J. Furniss | James A. Freund | Jonathan Myers | Keith Clay | Shirong Liu | George B. Chuyong | Alexandre A. de Oliveira | Mark E. Swanson | Shawn K. Y. Lum | T. Furniss | Jyh-Min Chiang | Gunter A. Fischer | Christine Fletcher | Zhanqing Hao | Yiching Lin | Ana C Andrade | George D. Weiblen | Jyh-Min Chiang | Alvaro Duque | Sheng-Hsin Su | Hebbalalu S. Suresh | Sandra L. Yap | Rajit Patankar | Rebecca Ostertag | Han Xu | Yide Li | Li-Wan Chang | Guo-Zhang M Song | Alberto Vicentini | D. Janík | David Allen | Erika M. Blomdahl | Ke Cao | Wei-Chun Chao | Sara J. Germain | Yue-Hua Hu | Shu‐Hui Wu | Billy C.H. Hau | Faith Inman-Narahari | Corneille E. N. Ewango | David Allen | Ana Andrade | Ke Cao | Paul M. Musili | Perry S. Ong | Rajit Patankar | Guo-Zhang M. Song | Shu‐Hui Wu | G. Song | Dairón Cárdenas | K. Becker | Wei‐Chun Chao | Li‐Wan Chang | Yue‐Hua Hu | Yi‐Ching Lin | Zhanqing Hao | Ana C. Andrade | Kuo‐Jung Chao | Amy Wolf

[1]  S. Hubbell,et al.  Contrasting structure and composition of the understory in species-rich tropical rain forests. , 2006, Ecology.

[2]  James H. Brown,et al.  Allometric scaling of plant energetics and population density , 1998, Nature.

[3]  A. Taylor,et al.  Widespread Increase of Tree Mortality Rates in the Western United States , 2009, Science.

[4]  D. Lindenmayer,et al.  Global Decline in Large Old Trees , 2012, Science.

[5]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[6]  Nate G. McDowell,et al.  On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene , 2015 .

[7]  J. Chave,et al.  Habitat specialization and phylogenetic structure of tree species in a coastal Brazilian white-sand forest , 2014 .

[8]  N. Georgiadis Conserving wildlife in African landscapes : Kenya's Ewaso ecosystem , 2011 .

[9]  N. McDowell,et al.  A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests , 2010 .

[10]  David Kenfack,et al.  Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks , 2014 .

[11]  Norman A. Bourg,et al.  CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change , 2015, Global change biology.

[12]  D. Lindenmayer,et al.  The ecology, distribution, conservation and management of large old trees , 2017, Biological reviews of the Cambridge Philosophical Society.

[13]  Sean M. McMahon,et al.  Size-related scaling of tree form and function in a mixed-age forest , 2015 .

[14]  Richard Condit,et al.  Tropical Forest Census Plots , 1998, Environmental Intelligence Unit.

[15]  Richard Condit,et al.  Data and database standards for permanent forest plots in a global network , 2014 .

[16]  N. Stephenson,et al.  Why do trees die? Characterizing the drivers of background tree mortality. , 2016, Ecology.

[17]  J. Lutz,et al.  Reconciling Niches and Neutrality in a Subalpine Temperate Forest , 2017 .

[18]  Jerry F. Franklin,et al.  Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA , 2009 .

[19]  R. Busing,et al.  The Unified Neutral Theory of Biodiversity and Biogeography , 2002 .

[20]  David Kenfack,et al.  Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. , 2006, Ecology letters.

[21]  R. Condit,et al.  Rarity and abundance in a diverse African forest , 2007, Biodiversity and Conservation.

[22]  Stephen P. Hubbell,et al.  Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season , 2004, Journal of Tropical Ecology.

[23]  W. Keeton,et al.  DO REMNANT OLD‐GROWTH TREES ACCELERATE RATES OF SUCCESSION IN MATURE DOUGLAS‐FIR FORESTS? , 2005 .

[24]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[25]  J. Wagtendonk,et al.  Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA , 2010 .

[26]  Stephen J. Wright,et al.  Light-Gap disturbances, recruitment limitation, and tree diversity in a neotropical forest , 1999, Science.

[27]  Norman A. Bourg,et al.  Plant diversity increases with the strength of negative density dependence at the global scale , 2017, Science.

[28]  E. Leigh,et al.  Tropical forest diversity and dynamism : findings from a large-scale plot network , 2004 .

[29]  T. Nakashizuka,et al.  Architectural differences associated with adult stature and wood density in 30 temperate tree species , 2008 .

[30]  David A. Coomes,et al.  Disturbances prevent stem size‐density distributions in natural forests from following scaling relationships , 2003 .

[31]  F. Rovero,et al.  Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .

[32]  J. Lutz,et al.  Individual species–area relationships in temperate coniferous forests , 2018 .

[33]  J. Zimmerman,et al.  Patch dynamics and community metastability of a subtropical forest: compound effects of natural disturbance and human land use , 2010, Landscape Ecology.

[34]  J. Lutz The Evolution of Long-Term Data for Forestry: Large Temperate Research Plots in an Era of Global Change , 2015 .

[35]  G. Koch,et al.  Biomass and growth potential of Eucalyptus regnans up to 100m tall , 2015 .

[36]  Stand Structure of A Seasonal Dry Evergreen Forest at Huai Kha Khaeng Wildlife Sanctuary, Western Thailand , 2002 .

[37]  G. Likens,et al.  New Policies for Old Trees: Averting a Global Crisis in a Keystone Ecological Structure , 2014 .

[38]  Markus Reichstein,et al.  Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity , 2017, Nature Ecology &Evolution.

[39]  Robert J. Pabst,et al.  Rate of tree carbon accumulation increases continuously with tree size , 2014, Nature.

[40]  László Orlóci,et al.  Applying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results , 1986 .

[41]  J. Franklin,et al.  The tree mortality regime in temperate old-growth coniferous forests: the role of physical damage , 2010 .

[42]  N. McDowell,et al.  Larger trees suffer most during drought in forests worldwide , 2015, Nature Plants.

[43]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[44]  I. Sun,et al.  Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation , 2010, Oecologia.

[45]  Jerry F. Franklin,et al.  The Structure of Natural Young , Mature , and Old-Growth Douglas-Fir Forests in Oregon and Washington , 2010 .

[46]  H. Beeckman,et al.  Seeing Central African forests through their largest trees , 2015, Scientific Reports.

[47]  I. Brown,et al.  Uncertainty in the biomass of Amazonian forests: An example from Rondônia, Brazil , 1995 .

[48]  Kalle Ruokolainen,et al.  Hyperdominance in Amazonian forest carbon cycling , 2015, Nature Communications.

[49]  Geoffrey B. West,et al.  A general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[50]  L. Sack,et al.  Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests , 2014, PloS one.

[51]  J. Oksanen,et al.  Static and Dynamic 3D Plots for the 'vegan' Package , 2015 .

[52]  Jiquan Chen,et al.  Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest. , 2014, Ecology.

[53]  When are habitat patches really islands , 2009 .

[54]  Emmanuel Saez,et al.  Wealth Inequality in the United States Since 1913: Evidence from Capitalized Income Tax Data , 2014 .

[55]  J. Lutz,et al.  The Importance of Large-Diameter Trees to Forest Structural Heterogeneity , 2013, PloS one.

[56]  Benjamin L Turner,et al.  Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. , 2016, Ecology letters.

[57]  G. Weiblen,et al.  Forest carbon in lowland Papua New Guinea: Local variation and the importance of small trees , 2014, Austral ecology.

[58]  Norman A. Bourg,et al.  Conspecific negative density‐dependent mortality and the structure of temperate forests , 2014 .

[59]  B. Guan,et al.  Micro-topographic differentiation of the tree species composition in a subtropical submontane rainforest in northeastern Taiwan. , 2010 .

[60]  O. Phillips,et al.  How do trees die? Mode of death in northern Amazonia. , 2009 .

[61]  T. Wiegand,et al.  Spatial patterns of tree species richness in two temperate forests , 2011 .

[62]  R. V. Pelt,et al.  Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests , 2016 .

[63]  M. Loreau,et al.  Multiple metrics of diversity have different effects on temperate forest functioning over succession , 2016, Oecologia.

[64]  M. Hixon,et al.  Food for thought BOFFFFs: on the importance of conserving old-growth age structure in fishery populations , 2014 .

[65]  Sean M McMahon,et al.  A general model of intra-annual tree growth using dendrometer bands , 2014, Ecology and evolution.

[66]  David A. Coomes,et al.  Global wood density database , 2009 .

[67]  K. Chao,et al.  Lowland rainforests in southern Taiwan and Lanyu, at the northern border of Paleotropics and under the influence of monsoon wind , 2010, Plant Ecology.

[68]  Chuankuan Wang,et al.  Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests , 2006 .

[69]  John J. Battles,et al.  The contribution of competition to tree mortality in old-growth coniferous forests , 2011 .

[70]  M. G. Ryan,et al.  Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil , 2010 .

[71]  Y. Malhi,et al.  Forest community response to invasive pathogens: the case of ash dieback in a British woodland , 2016 .

[72]  James Rosindell,et al.  Unified neutral theory of biodiversity and biogeography , 2010, Scholarpedia.

[73]  R. B. Jackson,et al.  The Structure, Distribution, and Biomass of the World's Forests , 2013 .

[74]  Norman A. Bourg,et al.  Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot , 2013 .

[75]  James H Brown,et al.  Extensions and evaluations of a general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[76]  D. Clark,et al.  Abundance, growth and mortality of very large trees in neotropical lowland rain forest , 1996 .

[77]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[78]  L. Chasmer,et al.  Forests on thawing permafrost: fragmentation, edge effects, and net forest loss , 2014, Global change biology.

[79]  L. Heath,et al.  Updated generalized biomass equations for North American tree species , 2014 .

[80]  Andrew J. Larson,et al.  Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest , 2012, PloS one.

[81]  M. North,et al.  Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest , 2009 .

[82]  David Kenfack,et al.  Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon , 2016, PloS one.

[83]  Frederick C. Meinzer,et al.  Control of transpiration in a 220-year-old Abies amabilis forest , 2001 .

[84]  J. Lutz,et al.  Fire and the Distribution and Uncertainty of Carbon Sequestered as Aboveground Tree Biomass in Yosemite and Sequoia & Kings Canyon National Parks , 2017 .

[85]  Stuart J. Davies,et al.  The 52-Hectare Forest Research Plot at Lambir Hills, Sarawak, Malaysia: tree distribution maps, diameter tables and species documentation. , 2002 .

[86]  B. Ayala-Orozco,et al.  Beyond the tropics: forest structure in a temperate forest mapped plot , 2010 .

[87]  S. McMahon,et al.  Tree spatial patterns of Fagus sylvatica expansion over 37 years , 2016 .

[88]  George W. Koch,et al.  The limits to tree height , 2004, Nature.

[89]  Han Y. H. Chen,et al.  Observations from old forests underestimate climate change effects on tree mortality , 2013, Nature Communications.

[90]  A. Oliveira,et al.  Local plant species delimitation in a highly diverse Amazonian forest: do we all see the same species? , 2013 .

[91]  L. Comita,et al.  Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. , 2010, Ecology letters.

[92]  F. He,et al.  A simple method for estimating species abundance from occurrence maps , 2014 .

[93]  S. Hubbell,et al.  Role of tree size in moist tropical forest carbon cycling and water deficit responses. , 2018, The New phytologist.