A Framework for Proof Systems

Linear logic can be used as a meta-logic to specify a range of object-level proof systems. In particular, we show that by providing different polarizations within a focused proof system for linear logic, one can account for natural deduction (normal and non-normal), sequent proofs (with and without cut), and tableaux proofs. Armed with just a few, simple variations to the linear logic encodings, more proof systems can be accommodated, including proof system using generalized elimination and generalized introduction rules. In general, most of these proof systems are developed for both classical and intuitionistic logics. By using simple results about linear logic, we can also give simple and modular proofs of the soundness and relative completeness of all the proof systems we consider.

[1]  V Miller Written English. , 1981, Nursing times.

[2]  Frank Pfenning,et al.  A Logical Characterization of Forward and Backward Chaining in the Inverse Method , 2007, Journal of Automated Reasoning.

[3]  Dale Miller,et al.  Forum: A Multiple-Conclusion Specification Logic , 1996, Theor. Comput. Sci..

[4]  Chuck Liang,et al.  Focusing and polarization in linear, intuitionistic, and classical logics , 2009, Theor. Comput. Sci..

[5]  Shôji Maehara,et al.  Eine Darstellung der Intuitionistischen Logik in der Klassischen , 1954, Nagoya Mathematical Journal.

[6]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[7]  Dale Miller,et al.  Logic programming in a fragment of intuitionistic linear logic , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[8]  Frank Pfenning Structural Cut Elimination: I. Intuitionistic and Classical Logic , 2000, Inf. Comput..

[9]  Sara Negri,et al.  Structural proof theory , 2001 .

[10]  Kazushige Terui,et al.  From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[11]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[12]  Vincent Danos,et al.  LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication , 1995 .

[13]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[14]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[15]  Dale Miller,et al.  On the Specification of Sequent Systems , 2005, LPAR.

[16]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[17]  Andrei Voronkov Proceedings of the First Russian Conference on Logic Programming , 1990 .

[18]  Amy P. Felty,et al.  Specifying Theorem Provers in a Higher-Order Logic Programming Language , 1988, CADE.

[19]  Frank Pfenning,et al.  Elf: a language for logic definition and verified metaprogramming , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[20]  Anders Henriksen Using LJF as a Framework for Proof Systems , 2010 .

[21]  Roy Dyckhoff,et al.  LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.

[22]  Vivek Nigam,et al.  Exploiting non-canonicity in the sequent calculus , 2009 .

[23]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[24]  Peter Schroeder-Heister,et al.  A natural extension of natural deduction , 1984, Journal of Symbolic Logic.

[25]  Raymond M. Smullyan,et al.  Analytic cut , 1969, Journal of Symbolic Logic (JSL).

[26]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[27]  Jan von Plato,et al.  Natural deduction with general elimination rules , 2001, Arch. Math. Log..

[28]  J. Girard,et al.  Advances in Linear Logic , 1995 .

[29]  Arnon Avron,et al.  Hypersequents, logical consequence and intermediate logics for concurrency , 1991, Annals of Mathematics and Artificial Intelligence.

[30]  Michel Parigot,et al.  Free Deduction: An Analysis of "Computations" in Classical Logic , 1990, RCLP.

[31]  Jean-Baptiste Joinet,et al.  Advances in Linear Logic: Sequent calculi for second order logic , 1995 .

[32]  Wilfried Sieg,et al.  Normal Natural Deduction Proofs (in classical logic) , 1998, Stud Logica.

[33]  Dale Miller,et al.  Focusing in linear meta-logic: extended report , 2008 .

[34]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[35]  R. Goodstein FIRST-ORDER LOGIC , 1969 .

[36]  Dominic J. D. Hughes A minimal classical sequent calculus free of structural rules , 2010, Ann. Pure Appl. Log..

[37]  Elaine Pimentel,et al.  Using Linear Logic to Reason about Sequent Systems , 2002, TABLEAUX.

[38]  Elaine Pimentel LINEAR LOGIC AS A FRAMEWORK FOR SPECIFYING SEQUENT CALCULUS , 2002 .

[39]  Dale Miller,et al.  Algorithmic specifications in linear logic with subexponentials , 2009, PPDP '09.

[40]  Christian G. Fermüller,et al.  Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods , 2002 .

[41]  Dominic J. D. Hughes A classical sequent calculus free of structural rules , 2005 .

[42]  Benedikt Löwe,et al.  Computability in Europe 2006 , 2008, Theory of Computing Systems.

[43]  Paul Ruet,et al.  Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..

[44]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[45]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[46]  Dale Miller,et al.  Focusing and Polarization in Intuitionistic Logic , 2007, CSL.

[47]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[48]  Ann Yasuhara Review: Raymond M. Smullyan, On Post's Canonical Systems , 1968 .

[49]  J. Girard Le Point Aveugle I : Vers la Perfection , 2006 .

[50]  Dale Miller,et al.  Incorporating Tables into Proofs , 2007, CSL.

[51]  Lawrence C. Paulson,et al.  The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.

[52]  Dale Miller,et al.  Focusing in Linear Meta-logic , 2008, IJCAR.