Aerospace Sliding Mode Control Toolbox: Relative Degree Approach with Resource Prospector Lander and Launch Vehicle Case Studies

Sliding mode control and observation techniques are widely used in aerospace applications, including aircraft, UAVs, launch vehicles, missile interceptors, and hypersonic missiles. This work is dedicated in creating a MATLAB based sliding mode controller design and simulation software toolbox that aims to support aerospace vehicle applications. An architecture of the aerospace sliding mode control toolbox (SMC Aero) using the relative degree approach is proposed. The SMC Aero libraries include first order sliding mode control (1-SMC), second order sliding mode control (2-SMC), higher order sliding mode (HOSM) control (either fixed gain or adaptive), as well as higher order sliding mode differentiators. The efficacy of the SMC Aero toolbox is confirmed in two case studies: controlling and simulating resource prospector lander (RPL) soft landing on the Moon and launch vehicle (LV) attitude control in an ascent mode.

[1]  James Frosch,et al.  Saturn AS-501/S-IC flight control system design. , 1967 .

[2]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[3]  Christopher Edwards,et al.  Continuous higher order sliding mode control with adaptation of air breathing hypersonic missile , 2016 .

[4]  Arie Levant,et al.  Practical Relative Degree Approach in Sliding-Mode Control , 2013 .

[5]  Yuri B. Shtessel,et al.  Launch vehicle attitude control using sliding mode control and observation techniques , 2012, J. Frankl. Inst..

[6]  Yuri B. Shtessel,et al.  Launch Vehicle Control Design Using Sliding Mode Control Toolbox , 2021, 2021 55th Annual Conference on Information Sciences and Systems (CISS).

[7]  Antonella Ferrara,et al.  Automatic identification of the relative degree of nonlinear systems: Application to sliding mode control design and experimental assessment , 2020 .

[8]  Arie Levant,et al.  Robust exact filtering differentiators , 2020, Eur. J. Control.

[9]  Takeshi Yamasaki,et al.  Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes , 2012, J. Frankl. Inst..

[10]  Christopher Edwards,et al.  An Adaptive Sliding Mode Observer for A Complex Network of Dynamical Systems , 2011 .

[11]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[12]  Huijun Gao,et al.  Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle , 2012, J. Frankl. Inst..

[13]  W. Marsden I and J , 2012 .

[14]  P. Olver Nonlinear Systems , 2013 .

[15]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[16]  A. Levant,et al.  Guidance and Control of Missile Interceptor using Second-Order Sliding Modes , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[17]  J. Orr,et al.  Linear Approximation to Optimal Control Allocation for Rocket Nozzles with Elliptical Constraints , 2011 .

[18]  May-Win L. Thein,et al.  Quasi-Continuous Higher Order Sliding-Mode Controllers for Spacecraft-Attitude-Tracking Maneuvers , 2010, IEEE Transactions on Industrial Electronics.

[19]  Zdzislaw Bubnicki,et al.  Modern Control Theory , 2005 .

[20]  Christopher Edwards,et al.  Adaptive continuous higher order sliding mode control , 2016, Autom..

[21]  PlestanFranck,et al.  A novel adaptive-gain supertwisting sliding mode controller , 2012 .

[22]  Tal Shima,et al.  Exo-atmospheric guidance of an accelerating interceptor missile , 2008, J. Frankl. Inst..

[23]  Yuri B. Shtessel,et al.  Multiple Timescale Flight Control Using Reconfigurable Sliding Modes , 1999 .

[24]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[25]  Yuri B. Shtessel,et al.  Twisting sliding mode control with adaptation: Lyapunov design, methodology and application , 2017, Autom..

[26]  Yuri B. Shtessel,et al.  Integrated Higher-Order Sliding Mode Guidance and Autopilot for Dual Control Missiles , 2009 .

[27]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[28]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[29]  Christopher Edwards,et al.  Adaptive dual-layer super-twisting control and observation , 2016, Int. J. Control.

[30]  Luis F. Luque-Vega,et al.  Robust block second order sliding mode control for a quadrotor , 2012, J. Frankl. Inst..

[31]  Yuri B. Shtessel,et al.  Tracking with asymptotic sliding mode and adaptive input delay effect compensation of nonlinearly perturbed delayed systems applied to traffic feedback control , 2016, Int. J. Control.

[32]  Christopher Edwards,et al.  Enhanced continuous higher order sliding mode control with adaptation , 2019, J. Frankl. Inst..

[33]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[34]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  Ronald A. Hess,et al.  Multi-Input/Multi-Output Reconfigurable Flight Control Design , 2001 .

[36]  Y. Shtessel,et al.  Resource Prospector Lander Control Design Using Sliding Mode Control Toolbox , 2021, SoutheastCon 2021.

[37]  Farbod Fahimi,et al.  A Universal trajectory Tracking controller for Mobile robots via Model-Free Online Reinforcement Learning , 2015, Control and Intelligent Systems.

[38]  Yuri B. Shtessel,et al.  New methodologies for adaptive sliding mode control , 2010, Int. J. Control.

[39]  Jeb S. Orr,et al.  State Space Implementation of Linear Perturbation Dynamics Equations for Flexible Launch Vehicles , 2009 .

[40]  Yuri B. Shtessel,et al.  Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer , 2012, J. Frankl. Inst..

[41]  Yuri B. Shtessel,et al.  A novel adaptive-gain supertwisting sliding mode controller: Methodology and application , 2012, Autom..

[42]  Yuri B. Shtessel,et al.  Sliding Mode Disturbance Observer-Based Control for a Reusable Launch Vehicle , 2005 .

[43]  Yuri B. Shtessel,et al.  Sliding Mode Control Toolbox for Aerospace Applications: Relative Degree Approach , 2020 .

[44]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .