A Comparative Analysis of Spectral Reflectance Reconstruction in Various Spaces Using a Trichromatic Camera System

An analysis is presented of how the space in which principal component analysis is performed can affect the colorimetric and spectral accuracy of spectral reconstruction. The spectral reconstruction is performed using digital counts given by a new concept of spectral image acquisition constituted by a trichromatic camera combined with absorption filters, instead of the traditional monochrome camera and a set of interference filters. The comparison of the spectral reconstruction performance in each space shows the advantages and disadvantages of using alternative spaces rather than reflectance.

[1]  Shoji Tominaga Spectral imaging by a multi-channel camera , 1999 .

[2]  R. Berns,et al.  Error propagation analysis in color measurement and imaging , 1997 .

[3]  Peter D. Burns,et al.  ANALYSIS OF IMAGE NOISE IN MULTISPECTRAL COLOR ACQUISITION , 1997 .

[4]  Patrick G. Herzog,et al.  On the Limitations of Metameric Imaging , 1999, PICS.

[5]  A. Casini,et al.  Multispectral Imaging System for the Mapping of Pigments in Works of Art by use of Principal-Component Analysis. , 1998, Applied optics.

[6]  Jon Y. Hardeberg,et al.  Spectrophotometric Image Analysis of Fine Art Paintings , 1996, CIC.

[7]  Werner Praefcke,et al.  A multispectral scanner , 1998 .

[8]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[9]  Roy S. Berns,et al.  A generic approach to color modeling , 1997 .

[10]  Jon Yngve Hardeberg,et al.  Multispectral Imaging in Multimedia , 1998 .

[11]  Werner Praefcke,et al.  Optimized Basis Functions for Coding Reflectance Spectra Minimizing the Visual Color Difference , 1995, Color Imaging Conference.

[12]  Norimichi Tsumura,et al.  Development of multiband color imaging systems for recordings of art paintings , 1998, Electronic Imaging.

[13]  P. Kubelka,et al.  Errata: New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[14]  Kirk Martinez,et al.  Digital imaging in European museums , 1997, Electronic Imaging.

[15]  Michael J. Vrhel,et al.  Color correction using principal components , 1992 .

[16]  Roy S. Berns,et al.  Challenges for Color Science in Multimedia Imaging , 1998 .

[17]  Werner Praefcke,et al.  Practice of multispectral image acquisition , 1998, Other Conferences.

[18]  Thomas G. Stockham,et al.  Producing colorimetric data from densitometric scans , 1993, Electronic Imaging.

[19]  Werner Praefcke Analysis-synthesis transforms versus orthogonal transforms for coding reflectance spectra , 1997, Color Imaging Conference.

[20]  Roy S. Berns,et al.  Spectral Estimation Using Trichromatic Digital Cameras , 1999 .

[21]  Peter D. Burns,et al.  Multispectral-based color reproduction research at the Munsell Color Science Laboratory , 1998, Other Conferences.

[22]  Roy S. Berns,et al.  High-Resolution Multi-Spectral Image Archives: A Hybrid Approach , 1998, CIC.

[23]  Jon Yngve Hardeberg,et al.  Spectral characterization of electronic cameras , 1998, Other Conferences.

[24]  Roy S. Berns,et al.  Colorimetric characterization of a desktop drum scanner using a spectral model , 1995, J. Electronic Imaging.

[25]  E. Allen Basic Equations Used in Computer Color Matching , 1966 .

[26]  S. Debra,et al.  Multichannel analysis of object-color spectra , 1994 .

[27]  H. S. Fairman,et al.  Metameric correction using parameric decomposition , 1987 .

[28]  Ron Gershon,et al.  Measurement and Analysis of Object Reflectance Spectra , 1994 .