TEAMwISE: Synchronised Immersive Environments for Exploration and Analysis of Movement Data

The recent availability of affordable and lightweight tracking sensors allows researchers to collect large and complex movement datasets. These datasets require applications that are capable of handling them whilst providing an environment that enables the analyst(s) to focus on the task of analysing the movement in the context of the geographic environment it occurred in. We present a framework for collaborative analysis of geospatial-temporal movement data with a use-case in collective behavior analysis. It supports the concurrent usage of several program instances, allowing to have different perspectives on the same data in collocated or remote setups. The implementation can be deployed in a variety of immersive environments, e.g. on a tiled display wall or mobile VR devices.

[1]  Kun Chang Lee,et al.  A New Approach to Exploring Spatiotemporal Space in the Context of Social Network Services , 2014, HCI.

[2]  Stefan van der Spek,et al.  Classifying pedestrian movement behaviour from GPS trajectories using visualization and clustering , 2014, Ann. GIS.

[3]  Tobias Isenberg,et al.  Immersive Analytics: An Introduction , 2018, Immersive Analytics.

[4]  Bart Kranstauber,et al.  Exploration through enrichment: a visual analytics approach for animal movement , 2011, GIS.

[5]  Yalong Yang,et al.  Maps and Globes in Virtual Reality , 2018, Comput. Graph. Forum.

[6]  Heidrun Schumann,et al.  Stacking-Based Visualization of Trajectory Attribute Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[7]  Fabien Picarougne,et al.  Visual Community Detection: An Evaluation of 2D, 3D Perspective and 3D Stereoscopic Displays , 2011, Graph Drawing.

[8]  John P. McIntire,et al.  What is 3D good for? A review of human performance on stereoscopic 3D displays , 2012, Defense + Commercial Sensing.

[9]  Stefan Wrobel,et al.  Visual analytics tools for analysis of movement data , 2007, SKDD.

[10]  Jie Li,et al.  An immersive approach to the visual exploration of geospatial network datasets , 2016, VRCAI.

[11]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[12]  A. MacEachren,et al.  Research Challenges in Geovisualization , 2001, KN - Journal of Cartography and Geographic Information.

[13]  Ying Zhang,et al.  Fly with the flock: immersive solutions for animal movement visualization and analytics , 2019, Journal of the Royal Society Interface.

[14]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[15]  Daniel A. Keim,et al.  Visual Analytics of Movement , 2013, Springer Berlin Heidelberg.

[16]  Natalia Adrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011 .

[17]  Xiaoru Yuan,et al.  Urban trajectory timeline visualization , 2014, 2014 International Conference on Big Data and Smart Computing (BIGCOMP).

[18]  Jie Li,et al.  A viewpoint based approach to the visual exploration of trajectory , 2017, J. Vis. Lang. Comput..

[19]  John C. Anderson,et al.  A geospatially enabled, PC-based, software to fuse and interactively visualize large 4D/5D data sets , 2009, OCEANS 2009.

[20]  Heidrun Schumann,et al.  Visual Methods for Analyzing Time-Oriented Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Bart Kranstauber,et al.  Wind estimation based on thermal soaring of birds , 2016, Ecology and evolution.

[22]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  S. Martin,et al.  A system for visualizing time varying oceanographic 3D data , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[24]  Karsten Klein,et al.  Design Considerations for Immersive Analytics of Bird Movements Obtained by Miniaturised GPS Sensors , 2017, VCBM.

[25]  T. Vicsek,et al.  Hierarchical group dynamics in pigeon flocks , 2010, Nature.

[26]  James K. Sheppard,et al.  Movement-Based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation , 2014, PloS one.

[27]  Kevin Buchin,et al.  UvA-DARE ( Digital Academic Repository ) Visual exploration of migration patterns in gull data , 2018 .

[28]  Bettina Speckmann,et al.  Analysis and visualisation of movement: an interdisciplinary review , 2015, Movement Ecology.

[29]  Tobias Hoppe,et al.  Stereoscopic cell visualization: from mesoscopic to molecular scale , 2014, J. Electronic Imaging.

[30]  Ana Paula Afonso,et al.  ST-TrajVis: interacting with trajectory data , 2013, BCS HCI.

[31]  Andrew U. Frank,et al.  Different Types of „Times“ in GIS , 2007 .

[32]  Mats Lind,et al.  Evaluating 2D and 3D visualizations of spatiotemporal information , 2010, TAP.

[33]  Aidan Slingsby,et al.  Exploratory Visual Analysis for Animal Movement Ecology , 2016, Comput. Graph. Forum.

[34]  Denis Lalanne,et al.  Flowstrates: An Approach for Visual Exploration of Temporal Origin‐Destination Data , 2011, Comput. Graph. Forum.

[35]  Gennady L. Andrienko,et al.  Supporting visual exploration of object movement , 2000, AVI '00.

[36]  Bart Kranstauber,et al.  move: Visualizing and analyzing animal track data. R package version 3.1.0 , 2018 .