Editorial of the Special Issue on Manifold Learning

In many information analysis tasks, one is often confronted with thousands to millions dimensional data, such as images, documents, videos, web data, bioinformatics data, etc. Conventional statistical and computational tools are severely inadequate for processing and analysing high-dimensional data due to the curse of dimensionality, where we often need to conduct inference with a limited number of samples. On the other hand, naturally occurring data may be generated by structured systems with possibly much fewer degrees of freedom than the ambient dimension would suggest. Recently, various works have considered the case when the data is sampled from a submanifold embedded in the much higher dimensional Euclidean space. Learning with full consideration of the low dimensional manifold structure, or specifically the intrinsic topological and geometrical properties of the data manifold is referred to as manifold learning, which has been receiving growing attention in our community in recent years. This special issue is to attract articles that (a) address the frontier problems in the scientific principles of manifold learning, and (b) report empirical studies and applications of manifold learning algorithms, including but not limited to pattern recognition, computer vision, web mining, image processing and so on. A total of 13 submissions were received. The papers included in this special issue are selected based on the reviews by experts in the subject area according to the journal’s procedure and quality standard. Each paper is reviewed by at least two reviewers and some of the papers were revised for two rounds according to the reviewers’ comments. The special issue includes 6 papers in total: 3 papers on the foundational theories of manifold learning, 2 papers on graph-based methods, and 1 paper on the application of manifold learning to video compression. The papers on the foundational theories of manifold learning cover the topics about the generalization ability of manifold learning, manifold ranking, and multi-manifold factorization. In the paper entitled “Manifold Learning: Generalizing Ability and Tangential Proximity”, Bernstein and Kuleshov propose a tangential proximity based technique to address the generalized manifold learning problem. The proposed method ensures not only proximity between the points and their reconstructed values but also proximity between the corresponding tangent spaces. The traditional manifold ranking methods are based on the Laplacian