Inference in Credal Networks with Branch-and-Bound Algorithms

A credal network associates sets of probability distributions with directed acyclic graphs. Under strong independence assumptions, inference with credal networks is equivalent to a signomial program under linear constraints, a problem that is NP-hard even for categorical variables and polytree models. We describe an approach for inference with polytrees that is based on branch-and-bound optimization/search algorithms. We use bounds generated by Tessem’s A/R algorithm, and consider various branch-and-bound schemes.

[1]  李幼升,et al.  Ph , 1989 .

[2]  Luis M. de Campos,et al.  Independence Concepts for Convex Sets of Probabilities , 1995, UAI.

[3]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[4]  Serafín Moral,et al.  Using probability trees to compute marginals with imprecise probabilities , 2002, Int. J. Approx. Reason..

[5]  Bruno R. Preiss,et al.  Data Structures and Algorithms with Object-Oriented Design Patterns in Java , 1999 .

[6]  Fabio Gagliardi Cozman,et al.  Credal networks , 2000, Artif. Intell..

[7]  Bjørnar Tessem,et al.  Interval probability propagation , 1992, Int. J. Approx. Reason..

[8]  AnHai Doan,et al.  Geometric foundations for interval-based probabilities , 1998, Annals of Mathematics and Artificial Intelligence.

[9]  Fabio Gagliardi Cozman,et al.  Robustness Analysis of Bayesian Networks with Local Convex Sets of Distributions , 1997, UAI.

[10]  John N. Hooker,et al.  Bayesian logic , 1994, Decision Support Systems.

[11]  Andrés Cano,et al.  Convex Sets Of Probabilities Propagation By Simulated Annealing , 1994 .

[12]  Andrés Cano,et al.  A Genetic algorithm to approximate convex sets of probabilities , 1996 .

[13]  Andr Es Cano,et al.  Using Probability Trees to Compute Marginals with Imprecise Probabilities , 2002 .

[14]  Isaac Levi,et al.  The Enterprise Of Knowledge , 1980 .

[15]  Denise Draper,et al.  Localized Partial Evaluation of Belief Networks , 1994, UAI.

[16]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[17]  Fabio Gagliardi Cozman,et al.  Inference with Seperately Specified Sets of Probabilities in Credal Networks , 2002, UAI.

[18]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[19]  Serafín Moral,et al.  An axiomatic framework for propagating uncertainty in directed acyclic networks , 1993, Int. J. Approx. Reason..

[20]  Fabio Gagliardi Cozman,et al.  Random Generation of Bayesian Networks , 2002, SBIA.

[21]  F. Cozman,et al.  Generalizing variable elimination in Bayesian networks , 2000 .

[22]  Enrico Fagiuoli,et al.  2U: An Exact Interval Propagation Algorithm for Polytrees with Binary Variables , 1998, Artif. Intell..

[23]  Inés Couso,et al.  Examples of Independence for Imprecise Probabilities , 1999, ISIPTA.

[24]  Uwe Pape,et al.  Advances in Geometric Programming , 1981 .

[25]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[26]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[27]  R. Duffin,et al.  Geometric programming with signomials , 1973 .

[28]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[29]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.