Lava–ground ice interactions in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the Tartarus Colles cone groups

[1] The western Tartarus Colles cone groups are located on Mars between northeastern Elysium Planitia and southern Arcadia Planitia (25°N–27°N and 170°E–171°E). This region contains >40,000 cratered cones covering a total area >2000 km2. These landforms have been interpreted as volcanic rootless constructs (VRCs) that were produced by explosive lava-water interactions ∼75–250 Ma ago. To better constrain their paleoenvironmental significance, we develop photogeological maps, morphological descriptions, lava thickness estimates, and statistical nearest neighbor (NN) analyses. The VRC-hosting Tartarus Colles lava flow exhibits bimodal thicknesses of 25–30 m and 55–60 m, whereas lava thickness associated with rootless eruption sites are unimodal, with a mean of 58 ± 8 m at 1 standard deviation (σ). Rootless eruption sites occur in 36 continuous domains with >10 rootless eruption sites per square kilometer and population sizes (N) >30. Renormalized Poisson NN analyses show that rootless eruption sites in 26 of 31 domains with N 3000 exhibit statistically significant clustering beyond 2σ. Regional clustering of rootless eruption sites in ∼60 m thick lava is interpreted to be the result of a minimum lava thickness threshold required to volatilize ground ice and generate rootless eruptions before the lava core solidifies. Ground ice continued to melt after VRC formation and formed pitted terrains through thermokarstification. Widespread VRCs and pitted terrains in the Tartarus Colles region imply the presence of a major fossil hydrothermal system that was generated by lava–ground ice interactions during the late to middle Amazonian.

[1]  Jeffrey B. Plescia,et al.  Cerberus Fossae, Elysium, Mars: a source for lava and water , 2003 .

[2]  Scott A. Chase,et al.  Pseudocraters on Mars , 1979 .

[3]  Christopher W. Hamilton,et al.  Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups , 2010 .

[4]  S. Thorarinsson,et al.  Laxárgljúfur and Laxárhraun: A Tephrochronological Study , 1951 .

[5]  D. Echeverria,et al.  Response to comment on: “A cascade analysis of the interaction of mercury and coproporphyrinogen oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production” by Heyer et al. [Toxicol. Lett. 161 (2006) 159–166] , 2007 .

[6]  Christopher W. Hamilton,et al.  Explosive lava–water interactions II: self-organization processes among volcanic rootless eruption sites in the 1783–1784 Laki lava flow, Iceland , 2010 .

[7]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[8]  J. Murray,et al.  Stratigraphical and morphological evidence for pingo genesis in the Cerberus plains , 2006 .

[9]  Kenneth H. Wohletz,et al.  Water/magma interaction: some theory and experiments on peperite formation , 2002 .

[10]  D. Page Comment on "Athabasca Valles, Mars: A Lava-Draped Channel System" , 2008, Science.

[11]  E. Shock,et al.  High-temperature life without photosynthesis as a model for Mars. , 1997, Journal of geophysical research.

[12]  A. McEwen,et al.  Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging , 2010 .

[13]  S. Rowland,et al.  The formation of circular littoral cones from tube-fed pāhoehoe: Mauna Loa, Hawai'i , 1996 .

[14]  Steven W. Squyres,et al.  Ice in the Martian regolith , 1992 .

[15]  L. Keszthelyi,et al.  THE IMPORTANCE OF P ¯ AHOEHOE , 1998 .

[16]  Spatial distribution of putative water related features in Southern Acidalia/Cydonia Mensae, Mars , 2009 .

[17]  Lori S. Glaze,et al.  Nearest‐neighbor analysis of small features on Mars: Applications to tumuli and rootless cones , 2007 .

[18]  Dougal A. Jerram,et al.  The spatial distribution of grains and crystals in rocks , 1996 .

[19]  Steven W. Squyres,et al.  Large-scale volcano-ground ice interactions on Mars , 1985 .

[20]  Kenneth L. Tanaka,et al.  Pingos on Earth and Mars , 2009 .

[21]  Thorvaldur Thordarson,et al.  The Geology of Mars: Rootless volcanic cones in Iceland and on Mars , 2007 .

[22]  Eric Pilger,et al.  Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes , 2004 .

[23]  Ronald Greeley,et al.  Volcanism on Mars , 1981 .

[24]  Kenneth S. Edgett,et al.  Mass movement slope streaks imaged by the Mars Orbiter Camera , 2001 .

[25]  Kenneth L. Tanaka,et al.  Geologic map of the northern plains of Mars , 2005 .

[26]  Peter J. Mouginis-Mark,et al.  Volcano/ground ice interactions in Elysium Planitia, Mars , 1985 .

[27]  D. Page Recent low-latitude freeze–thaw on Mars , 2007 .

[28]  Christopher W. Hamilton,et al.  New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution , 2010, Comput. Geosci..

[29]  Alfred S. McEwen,et al.  Icelandic analogs to Martian flood lavas , 2004 .

[30]  A. McEwen,et al.  An assessment of evidence for pingos on Mars using HiRISE , 2010 .

[31]  F. Fanale,et al.  Global distribution and migration of subsurface ice on mars , 1985 .

[32]  N. Cabrol,et al.  Possible Frost Mounds in an Ancient Martian Lake Bed , 2000 .

[33]  R. V. Fisher Puu Hou littoral cones, Hawaii , 1968 .

[34]  Mark R. Rosiek,et al.  Emplacement of the youngest flood lava on Mars: A short, turbulent story , 2010 .

[35]  B. Lucchitta Mars and Earth: Comparison of cold-climate features , 1981 .

[36]  K. Wohletz Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies , 1986 .

[37]  S. Thorarinsson,et al.  The crater groups in Iceland , 1953 .

[38]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[39]  B. Jakosky,et al.  The biological potential of Mars, the early Earth, and Europa. , 1998, Journal of geophysical research.

[40]  Alfred S. McEwen,et al.  High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter Primary Science Phase , 2008 .

[41]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[42]  Christopher W. Hamilton,et al.  Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: Using spatial distribution as a remote sensing tool , 2006 .

[43]  J. Lanz,et al.  Cone fields in SW Elysium Planitia: Hydrothermal venting on Mars? , 2009 .

[44]  T. Thordarson,et al.  Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784 , 2005 .

[45]  G. Danielson,et al.  Mars Observer Camera , 1987 .

[46]  A. McEwen,et al.  Response to Comment on "Athabasca Valles, Mars: A Lava-Draped Channel System" , 2008, Science.

[47]  A. Harris,et al.  Construction dynamics of a lava channel , 2009 .

[48]  Lionel Wilson,et al.  Mars: a review and synthesis of general environments and geological settings of magma-H2O interactions , 2002, Geological Society, London, Special Publications.

[49]  C. Allen Volcano‐ice interactions on Mars , 1979 .

[50]  Christopher W. Hamilton,et al.  Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland , 2010 .

[51]  Alfred S. McEwen,et al.  Athabasca Valles, Mars: A Lava-Draped Channel System , 2007, Science.

[52]  L. Wilson,et al.  Heat transfer in volcano–ice interactions on Earth , 2007, Annals of Glaciology.

[53]  J. P. Kauahikaua,et al.  Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .

[54]  P. J. Clark,et al.  Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations , 1954 .

[55]  B. Jakosky,et al.  Biological potential of low-temperature aqueous environments on Mars , 2005, International Journal of Astrobiology.

[56]  J. Kauahikaua,et al.  Hawaiian lava-flow dynamics during the Pu'u 'ō'Ō-KŪpaianaha eruption: A tale of two decades , 2003 .

[57]  G. Mathew,et al.  Cones and craters on Mount Pavagadh, Deccan Traps: Rootless cones? , 2004 .

[58]  W. Hartmann,et al.  Elysium Planitia lava flows: Crater count chronology and geological implications , 2000 .

[59]  Richard J. Soare,et al.  Mesoscale raised rim depressions (MRRDs) on Earth: A review of the characteristics, processes, and spatial distributions of analogs for Mars , 2009 .

[60]  Philip E. Long,et al.  A new model for the emplacement of Columbia River basalts as large, inflated Pahoehoe Lava Flow Fields , 1996 .

[61]  H. Frey,et al.  Subkilometer Martian volcanoes: Properties and possible terrestrial analogs , 1982 .

[62]  A. McEwen,et al.  Terrestrial analogs and thermal models for Martian flood lavas , 1999 .

[63]  R. Kretz,et al.  On the spatial distribution of crystals in rocks , 1969 .

[64]  J. Head,et al.  Amazonis Planitia: The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars , 2002 .

[65]  Alfred S. McEwen,et al.  Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times , 2001 .

[66]  L. Keszthelyi,et al.  Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data , 2005 .

[67]  The Tartarus-Colles Cone Group and Its Implications for Explosive Lava-Water Interactions in the Grjota Valles Region of Mars , 2009 .

[68]  M. Malin,et al.  Mars Observer camera , 1992 .

[69]  Lionel Wilson,et al.  Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release , 2003 .

[70]  R. Greeley,et al.  Rootless cones on Mars: a consequence of lava-ground ice interaction , 2002, Geological Society, London, Special Publications.

[71]  T. Thordarson,et al.  The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785 , 1993 .

[72]  Ronald Greeley,et al.  Icelandic pseudocraters as analogs to some volcanic cones on Mars , 2001 .

[73]  M. Bishop,et al.  Higher-order neighbor analysis of the Tartarus Colles cone groups, Mars: The application of geographical indices to the understanding of cone pattern evolution , 2008 .

[74]  D. Hillel,et al.  The stability of ground ice in the equatorial region of Mars , 1983 .

[75]  W. Hartmann Martian cratering 9: Toward resolution of the controversy about small craters , 2007 .

[76]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[77]  S. Baloga,et al.  Pahoehoe transport as a correlated random walk , 2000 .

[78]  A. Rittmann Die Vulkane am Myvatn in Nordost-Island , 1938 .

[79]  M. Balme,et al.  Dating martian climate change , 2009 .

[80]  M. Selby,et al.  Hillslope materials and processes , 1982 .

[81]  J. Emery,et al.  Young (late Amazonian), near-surface, ground ice features near the equator, Athabasca Valles, Mars , 2005 .