Determination of Quantum Efficiency in In$_{\bf {0.53}}$ Ga$_{\bf{0.47}}$As-InP-Based APDs

A method to precisely determine the quantum efficiency and primary photocurrent in avalanche photodiodes (APDs) is presented based on a linear relationship between excess noise factor F and gain, M. The new method is used to accurately compare performance of modern APD designs when nonlocal impact ionization effects govern the relationship between noise and gain.

[1]  J.C. Campbell,et al.  Recent Advances in Telecommunications Avalanche Photodiodes , 2007, Journal of Lightwave Technology.

[2]  Bahaa E. A. Saleh,et al.  Optimal excess noise reduction in thin heterojunction Al/sub 0.6/Ga/sub 0.4/As-GaAs avalanche photodiodes , 2003 .

[3]  Majeed M. Hayat,et al.  Optimal excess noise reduction in thin heterojunction Al0.6Ga0.4As-GaAs avalanche photodiodes , 2001 .

[4]  Zhiwen Lu,et al.  Monte Carlo Simulation of InAlAs/InAlGaAs Tandem Avalanche Photodiodes , 2012, IEEE Journal of Quantum Electronics.

[5]  R. C. Tozer,et al.  Nonlocal effects in thin 4H-SiC UV avalanche photodiodes , 2003 .

[6]  William R. Clark,et al.  InAlAs-InGaAs based avalanche photodiodes for next generation eye-safe optical receivers , 2007, Photonics North.

[7]  J.C. Campbell,et al.  High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region , 2005, IEEE Photonics Technology Letters.

[8]  R. C. Tozer,et al.  Low avalanche noise characteristics in thin InP p/sup +/-i-n/sup +/ diodes with electron initiated multiplication , 1999, IEEE Photonics Technology Letters.

[9]  Chee Hing Tan,et al.  Avalanche noise measurement in thin Si p+-i-n+ diodes , 2000 .

[10]  Joe C. Campbell,et al.  Ultra-low noise avalanche photodiodes with a "centered-well" multiplication region , 2003 .

[11]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[12]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[13]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[14]  K. Vaccaro,et al.  A 1 cm/spl times/1 cm In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode array , 2006, IEEE Photonics Technology Letters.

[15]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[16]  J.C. Campbell,et al.  Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses , 2000, IEEE Journal of Quantum Electronics.

[17]  X. Li,et al.  Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region , 2001, IEEE Photonics Technology Letters.

[18]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[19]  H. Kim,et al.  Reliable, high gain-bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb/s receivers , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[20]  Ping Yuan,et al.  Avalanche photodiodes with an impact-ionization-engineered multiplication region , 2000, LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (Cat. No.00CH37080).

[21]  C. Hu,et al.  A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .