Limiting Negations in Formulas
暂无分享,去创建一个
[1] Shao Chin Sung,et al. Limiting Negations in Bounded-Depth Circuits: An Extension of Markov's Theorem , 2003, ISAAC.
[2] Miklos Santha,et al. Limiting Negations in Constant Depth Circuits , 1993, SIAM J. Comput..
[3] A. A. Markov. On the Inversion Complexity of a System of Functions , 1958, JACM.
[4] Tetsuro Nishino,et al. On the Complexity of Negation-Limited Boolean Networks , 1998, SIAM J. Comput..
[5] Hiroki Morizumi. Limiting negations in non-deterministic circuits , 2009, Theor. Comput. Sci..
[6] Hiroki Morizumi,et al. Negation-Limited Inverters of Linear Size , 2008, ISAAC.
[7] Jun Tarui,et al. On the negation-limited circuit complexity of merging , 2003, Discret. Appl. Math..
[8] Johan Hå stad. The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .
[9] Michael J. Fischer. Hauptvortrag: The complexity of negation-limited networks - A brief survey , 1975, Automata Theory and Formal Languages.
[10] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[11] Akira Maruoka,et al. A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)log log n Negation Gates , 2005, SIAM J. Comput..
[12] Hiroki Morizumi. A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas , 2008, ArXiv.
[13] Noga Alon,et al. The monotone circuit complexity of boolean functions , 1987, Comb..
[14] Ravi B. Boppana,et al. The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[15] A Pettorossi. Automata theory and formal languages , 2008 .
[16] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[17] Shao Chin Sung,et al. An exponential gap with the removal of one negation gate , 2002, Inf. Process. Lett..
[18] M. Paterson,et al. Optimal carry save networks , 1992 .
[19] Stasys Jukna. On the minimum number of negations leading to super-polynomial savings , 2004, Inf. Process. Lett..
[20] Leslie G. Valiant,et al. Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.
[21] Ingo Wegener,et al. The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.