Optimal sensor placement for space modal identification of crane structures based on an improved harmony search algorithm

The problem of optimal sensor placement plays a key role in the success of structural health monitoring (SHM) systems. In this study, a new method is presented to investigate the optimization problem of sensor placement on gantry crane structures. The method is a combination of an improved harmony search (HS) algorithm and the modal assurance criterion (MAC). Firstly, we review previous studies on setting reasonable values for HS parameters that have the most impact on the result, and highlight the lack of general rules governing this aspect. Based on more efficient HS algorithms resulting from those studies, we apply our proposed technique to the optimization problem of sensor placement on gantry crane structures. The purpose of the optimization method is to select the optimal sensor locations on gantry crane girders to establish a sensor network for an SHM system. Our results show that the HS algorithm is a powerful search and optimization technique that can lead to a better solution to the problem of engineering optimization. The mode of a crane structure could be identified more easily when different mode shape orientations are considered comprehensively.摘要目的采用一种新型改进的和声搜索算法, 对基于空间模态识别的传感器布置的优化方法进行研究。 根据对门式起重机结构动力特性研究, 得到更为理想的测点布置方案和优化结果。创新点1. 研究和声搜索算法的参数合理取值范围, 提高计算效率; 2. 利用和声搜索算法结合模态置信度准则对起重机梁的空间模态识别进行研究, 提出测点布置的合理优化方案。方法1. 基于一种改进的和声搜索算法与模态置信度准则相结合的方法对最优的传感器布置方案进行研究, 通过建立的评估函数对优化得到的布置方案进行评估比较, 得到近似最优的测点位置和传感器数目; 2. 结合门式起重机结构的动力学特性研究结果, 对其在二维和三维空间的振动模态分别进行研究比较, 得到更为理想的优化布置方案。结论1. 和声搜索算法具有程序实现简单和搜索能力较强的优点, 本研究得到了其参数的合理取值范围, 提高了其优化搜索的能力; 2. 研究得到了较为理想的测点位置和合理的传感器数目; 3. 根据起重机结构的动力特性, 考虑其空间模态可得到更为理想的优化方案和识别能力。

[1]  Jianchun Li UNIFIED LIMIT SOLUTION FOR OBLIQUE PLATES OF METAL , 2000 .

[2]  Richard G. Cobb,et al.  Sensor Placement and Structural Damage Identification from Minimal Sensor Information , 1997 .

[3]  Chen Hongyan,et al.  Structural Health Monitoring System of Gantry Crane Based on ZigBee Technology , 2012, 2012 Third International Conference on Digital Manufacturing & Automation.

[4]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[5]  D. Kammer Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures , 1990, 1990 American Control Conference.

[6]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[7]  Jerome P. Lynch,et al.  Optimal sensor placement for health monitoring of civil structures , 2010, Proceedings of the 2011 American Control Conference.

[8]  Matteo Bruggi,et al.  Optimization of sensor placement to detect damage in flexible plates , 2013 .

[9]  S. S. Law,et al.  Optimum sensor placement for structural damage detection , 2000 .

[10]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[11]  Volkmar Zabel,et al.  Optimal reference sensor positions using output-only vibration test data , 2013 .

[12]  M. Salama,et al.  Optimal placement of excitations and sensors for verification of large dynamical systems , 1987 .

[13]  Zong Woo Geem,et al.  A survey on applications of the harmony search algorithm , 2013, Eng. Appl. Artif. Intell..

[14]  Youn-sik Park,et al.  SENSOR PLACEMENT GUIDE FOR STRUCTURAL JOINT STIFFNESS MODEL IMPROVEMENT , 1997 .

[15]  Arturo Garcia-Perez,et al.  Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis , 2013 .

[16]  C. Papadimitriou,et al.  The effect of prediction error correlation on optimal sensor placement in structural dynamics , 2012 .

[17]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[18]  M. Mahdavi,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com , 2007 .

[19]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[20]  Bin Ma,et al.  Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm , 2013 .