Freezing behavior in porous glasses and MCM-41

[1]  Ravi Radhakrishnan,et al.  Effect of the fluid-wall interaction on freezing of confined fluids: Toward the development of a global phase diagram , 2000 .

[2]  K. Gubbins,et al.  Experimental and simulation studies of melting and freezing in porous glasses , 2000 .

[3]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[4]  Ravi Radhakrishnan,et al.  Freezing of simple fluids in microporous activated carbon fibers: Comparison of simulation and experiment , 1999 .

[5]  K. Gubbins,et al.  Phase Transitions in Pores: Experimental and Simulation Studies of Melting and Freezing† , 1999 .

[6]  Ravi Radhakrishnan,et al.  FREE ENERGY STUDIES OF FREEZING IN SLIT PORES : AN ORDER-PARAMETER APPROACH USING MONTE CARLO SIMULATION , 1999 .

[7]  P. Pissis,et al.  Dielectric studies of glass transition in confined propylene glycol , 1998 .

[8]  K. Gubbins,et al.  A molecular simulation study of freezing/melting phenomena for Lennard-Jones methane in cylindrical nanoscale pores , 1997 .

[9]  K. Gubbins,et al.  Freezing/melting phenomena for Lennard-Jones methane in slit pores: A Monte Carlo study , 1997 .

[10]  Fischer,et al.  Dielectric relaxation of liquids at the surface of a porous glass. , 1995, Physical review. B, Condensed matter.

[11]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[12]  J. Klafter,et al.  Dipole-Dipole Interactions near Interfaces , 1993 .

[13]  Wolfgang Haller,et al.  Rearrangement Kinetics of the Liquid—Liquid Immiscible Microphases in Alkali Borosilicate Melts , 1965 .