Biquintic G 2 surfaces

This paper gives a construction to complete, at extraordinary points, an otherwise bi-cubic spline surface – so that the resulting surface is curvature continuous everywhere. To fill the n-sided gap in the bi-cubic surface, a cap is constructed from n spline patches, each consisting of 2× 2 pieces of polynomial degree bi-5. Particular care is taken to continue the curvature distribution from the bicubic boundary of the gap into the cap, and gently average out such propagated curvature in the neighborhood of the extraordinary point.

[1]  Lexing Ying,et al.  A simple manifold-based construction of surfaces of arbitrary smoothness , 2004, ACM Trans. Graph..

[2]  Jörg Peters,et al.  Guided C 2 Spline Surfaces with V-Shaped Tessellation , 2007, IMA Conference on the Mathematics of Surfaces.

[3]  Jörg Peters,et al.  Concentric tessellation maps and curvature continuous guided surfaces , 2007, Comput. Aided Geom. Des..

[4]  Josep Cotrina Navau,et al.  Modelling surfaces from planar irregular meshes , 2000, Comput. Aided Geom. Des..

[5]  John A. Gregory,et al.  Irregular C2 surface construction using bi-polynomial rectangular patches , 1999, Comput. Aided Geom. Des..

[6]  A. Levin Modified subdivision surfaces with continuous curvature , 2006, ACM Trans. Graph..

[7]  John A. Gregory,et al.  A C2 polygonal surface patch , 1989, Comput. Aided Geom. Des..

[8]  Xiuzi Ye,et al.  Curvature continuous interpolation of curve meshes , 1997, Comput. Aided Geom. Des..

[9]  Jörg Peters,et al.  C2 free-form surfaces of degree (3, 5) , 2002, Comput. Aided Geom. Des..

[10]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[11]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[12]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[13]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[14]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[15]  Przemyslaw Kiciak,et al.  Spline surfaces of arbitrary topology with continuous curvature and optimized shape , 2013, Comput. Aided Des..

[16]  J. Peters,et al.  Polynomial C2 Spline Surfaces Guided by Rational Multisided Patches , 2005 .

[17]  Jörg Peters,et al.  Guided spline surfaces , 2009, Comput. Aided Geom. Des..

[18]  Jörg Peters,et al.  On the complexity of smooth spline surfaces from quad meshes , 2009, Comput. Aided Geom. Des..

[19]  Charles T. Loop,et al.  G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.

[20]  Jörg Peters,et al.  Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..

[21]  Jörg Peters,et al.  Assembling curvature continuous surfaces from triangular patches , 2009, Comput. Graph..

[22]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[23]  Jörg Peters,et al.  An Introduction to Guided and Polar Surfacing , 2008, MMCS.

[24]  Charles T. Loop Second order smoothness over extraordinary vertices , 2004, SGP '04.