Quality Metrics for 2D Scatterplot Graphics: Automatically Reducing Visual Clutter

The problem of visualizing huge amounts of data is very well known in the field of Computer Graphics. Visualizing large number of items (the order of millions) forces almost any kind of techniques to reveal its limits in terms of expressivity and scalability. To deal with this problem we propose a ”feature preservation” approach, based on the idea of modelling the final visualization in a virtual space in order to analyze its features (e.g, absolute and relative density, clusters, etc.). Through this approach we provide a formal model to measure the visual clutter resulting from the representation of a large dataset on a physical device, obtaining some figures about the visualization decay and devising an automatic sampling strategy able to preserve relative densities.

[1]  Markus Gross,et al.  H-BLOB: a hierarchical visual clustering method using implicit surfaces , 2000 .

[2]  Michael Stonebraker,et al.  Constant density visualizations of non-uniform distributions of data , 1998, UIST '98.

[3]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[4]  Ramana Rao,et al.  Visualizing large trees using the hyperbolic browser , 1996, CHI Conference Companion.

[5]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[6]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[7]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[8]  Michael Stonebraker,et al.  VIDA: (Visual Information Density Adjuster) , 1999, CHI EA '99.

[9]  Richard Brath,et al.  Concept Demonstration Metrics for Effective Information Visualization , 1997 .

[10]  Daniel A. Keim,et al.  HD-Eye: visual clustering of high dimensional data , 2002, SIGMOD '02.

[11]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[12]  Alan J. Dix,et al.  Density control through random sampling: an architectural perspective , 2002, Proceedings Sixth International Conference on Information Visualisation.

[13]  Paul Whitney,et al.  The need for metrics in visual information analysis , 1997, NPIV '97.

[14]  James D. Hollan,et al.  Pad++: a zooming graphical interface for exploring alternate interface physics , 1994, UIST '94.